diff --git a/sections/semisimple-algebras.tex b/sections/semisimple-algebras.tex
@@ -452,9 +452,10 @@ order in \(Q\), where elements are ordered by their \emph{heights}.
\begin{definition}
Let \(\Sigma = \{\beta_1, \ldots, \beta_k\}\) be a basis for \(\Delta\).
Given \(\alpha = n_1 \beta_1 + \cdots + n_2 \beta_2 \in Q\) with \(n_1,
- \ldots, n_k \in \mathbb{Z}\), we call the number \(h(\alpha) = n_1 + \cdots +
- n_k \in \mathbb{Z}\) \emph{the height of \(\alpha\)}. We say that \(\alpha
- \preceq \beta\) if \(h(\alpha) \le h(\beta)\).
+ \ldots, n_k \in \mathbb{Z}\), we call the number \(\operatorname{ht}(\alpha)
+ = n_1 + \cdots + n_k \in \mathbb{Z}\) \emph{the height of \(\alpha\)}. We say
+ that \(\alpha \preceq \beta\) if \(\operatorname{ht}(\alpha) \le
+ \operatorname{ht}(\beta)\).
\end{definition}
\begin{definition}