- Commit
- c40b552473720d093a2e10273aeffd40ecf4e5f6
- Parent
- f9133eab0004eedb3be169e1ea72a3a5993c80f8
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Moved the discussion on the existence of a coherent extension to a separate theorem
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Moved the discussion on the existence of a coherent extension to a separate theorem
1 file changed, 46 insertions, 34 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/mathieu.tex | 80 | 46 | 34 |
diff --git a/sections/mathieu.tex b/sections/mathieu.tex @@ -295,9 +295,9 @@ \begin{proposition}\label{thm:irr-admissible-is-contained-in-nice-mod} Let \(V\) be an irreducible infinite-dimensional admissible - \(\mathfrak{g}\)-module. Then \(V\) is contained in a weight module \(M\) of - degree \(d\) such that \(\operatorname{supp} M = Q + \operatorname{supp} V\) - and \(\dim M_\lambda = d\) for all \(\lambda \in \operatorname{supp} M\). + \(\mathfrak{g}\)-module. Then \(V\) is contained in a weight module \(W\) of + degree \(d\) such that \(\operatorname{supp} W = Q + \operatorname{supp} V\) + and \(\dim W_\lambda = d\) for all \(\lambda \in \operatorname{supp} W\). \end{proposition} % TODO: Remark that any module over the localization is a g-module if we @@ -323,63 +323,75 @@ \end{align*} is polynomial. - \item If \(M\) is the \(\mathcal{U}(\mathfrak{g})_{(F_\alpha : \alpha \in + \item If \(W\) is the \(\mathcal{U}(\mathfrak{g})_{(F_\alpha : \alpha \in \Sigma)}\)-module \(\mathcal{U}(\mathfrak{g})_{(F_\alpha : \alpha \in \Sigma)} \otimes V\), \(\lambda, \mu \in \mathfrak{h}^*\) and - \(\theta_\lambda M\) is the \(\mathcal{U}(\mathfrak{g})_{(F_\alpha : - \alpha \in \Sigma)}\)-module \(M\) twisted by the automorphism - \(\theta_\lambda\) then \(M_\mu = (\theta_\lambda M)_{\mu + + \(\theta_\lambda W\) is the \(\mathcal{U}(\mathfrak{g})_{(F_\alpha : + \alpha \in \Sigma)}\)-module \(W\) twisted by the automorphism + \(\theta_\lambda\) then \(W_\mu = (\theta_\lambda W)_{\mu + \lambda}\). \end{enumerate} \end{proposition} -\begin{theorem}[Mathieu] +\begin{proposition}[Mathieu] Let \(V\) be an infinite-dimensional admissible irreducible - \(\mathfrak{g}\)-module of degree \(d\). There exists a unique semisimple - coherent extension \(\operatorname{Ext}(V)\) of \(V\). More precisely, if - \(\mathcal{M}\) is any coherent extension of \(V\), then - \(\mathcal{M}^{\operatorname{ss}} \cong \operatorname{Ext}(V)\). Furthermore, - \(V\) is itself contained in \(\operatorname{Ext}(V)\) and - \(\operatorname{Ext}(V)\) is irreducible as a coherent family. -\end{theorem} + \(\mathfrak{g}\)-module of degree \(d\). There exists a coherent extension + \(\mathcal{M}\) of \(V\) with degree \(d\). +\end{proposition} -% TODOOO: Prove the uniqueness \begin{proof} - The existence part should now be clear from the previous discussion: let - \(\Lambda\) be a set of representatives of the \(Q\)-cosets in - \(\mathfrak{h}^*\) with \(0 \in \Lambda\), \(M\) be as in + Let \(\Lambda\) be a set of representatives of the \(Q\)-cosets in + \(\mathfrak{h}^*\) with \(0 \in \Lambda\), \(W = + \mathcal{U}(\mathfrak{g})_{(F_\alpha : \alpha \in \Sigma)} + \otimes_{\mathcal{U}(\mathfrak{g})} V\) be as in proposition~\ref{thm:irr-admissible-is-contained-in-nice-mod} and take \[ \mathcal{M} - = \bigoplus_{\lambda \in \Lambda} \theta_\lambda M + = \bigoplus_{\lambda \in \Lambda} \theta_\lambda W \] - On the one hand, \(V\) lies in \(M = \theta_0 M\) -- notice that + On the one hand, \(V\) lies in \(W = \theta_0 W\) -- notice that \(\theta_0\) is just the identity operator -- and therefore \(V \subset \mathcal{M}\). On the other hand, \(\dim \mathcal{M}_\mu = \dim - \theta_\lambda M_\mu = \dim M_{\mu - \lambda} = d\) for all \(\mu \in + \theta_\lambda W_\mu = \dim W_{\mu - \lambda} = d\) for all \(\mu \in \lambda + Q\), \(\lambda \in \Lambda\). Furtheremore, given \(u \in C_{\mathcal{U}(\mathfrak{g})}(\mathfrak{h})\) and \(\mu \in \lambda + Q\), \[ \operatorname{Tr}(u\!\restriction_{\mathcal{M}_\mu}) - = \operatorname{Tr}(\theta_\lambda(u)\!\restriction_{M_{\mu - \lambda}}) + = \operatorname{Tr}(\theta_\lambda(u)\!\restriction_{W_{\mu - \lambda}}) \] is polynomial in \(\mu\) because of the second item of proposition~\ref{thm:nice-automorphisms-exist}. +\end{proof} - In other words, \(\mathcal{M}\) is a coherent extension of \(V\) of degree - \(d\). Hence there is a semisimple coherent extention \(\operatorname{Ext}(V) - = \mathcal{M}^{\operatorname{ss}}\) of \(V\) with \(\deg - \operatorname{Ext}(V) = d\). We claim \(V\) is contained in - \(\operatorname{Ext}(V)\). Indeed, since \(V\) is contained in \(M \subset - \mathcal{M}\) given \(\lambda \in \operatorname{supp} V\) we can fix some - composition series of \(0 = \mathcal{M}_0 \subset \mathcal{M}_1 \subset - \cdots \subset \mathcal{M}_n = \mathcal{M}[\lambda]\) with that \(V = - \mathcal{M}_1\), so that there is a natural inclusion +\begin{theorem}[Mathieu] + Let \(V\) be an infinite-dimensional admissible irreducible + \(\mathfrak{g}\)-module of degree \(d\). There exists a unique semisimple + coherent extension \(\operatorname{Ext}(V)\) of \(V\). More precisely, if + \(\mathcal{M}\) is any coherent extension of \(V\), then + \(\mathcal{M}^{\operatorname{ss}} \cong \operatorname{Ext}(V)\). Furthermore, + \(V\) is itself contained in \(\operatorname{Ext}(V)\) and + \(\operatorname{Ext}(V)\) is irreducible as a coherent family. +\end{theorem} + +% TODOOO: Prove the uniqueness +% TODOO: Does every coherent extension of V have the same degree as V? +\begin{proof} + The existence part should be clear from the previous discussion: let + \(\mathcal{M}\) be a coherent extension of \(V\) with \(\deg \mathcal{M} = + d\) and take \(\operatorname{Ext}(V) = \mathcal{M}^{\operatorname{ss}}\) of + \(V\). + + We claim \(V\) is contained in \(\operatorname{Ext}(V)\). Indeed, if we fix + some composition series \(0 = + \mathcal{M}_0 \subset \mathcal{M}_1 \subset \cdots \subset \mathcal{M}_n = + \mathcal{M}[\lambda]\) of \(\mathcal{M}[\lambda]\) with + \(V \cong \mfrac{\mathcal{M}_{i + 1}}{\mathcal{M}_i}\), \(\lambda \in + \operatorname{supp} V\), there is a natural inclusion \[ V - \isoto \mfrac{\mathcal{M}_1}{\mathcal{M}_0} - \to \bigoplus_i \mfrac{\mathcal{M}_{i + 1}}{\mathcal{M}_i} + \isoto \mfrac{\mathcal{M}_{i + 1}}{\mathcal{M}_i} + \to \bigoplus_j \mfrac{\mathcal{M}_{j + 1}}{\mathcal{M}_j} = \mathcal{M}^{\operatorname{ss}}[\lambda] \subset \operatorname{Ext}(V) \]