lie-algebras-and-their-representations

Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules

Commit
cac93e79812075c627b313d96b77a8b7d83ad209
Parent
f309228f6d154eb47775ecb965743540bcb1f23b
Author
Pablo <pablo-escobar@riseup.net>
Date

Fixed a typo

Diffstat

1 file changed, 1 insertion, 1 deletion

Status File Name N° Changes Insertions Deletions
Modified sections/mathieu.tex 2 1 1
diff --git a/sections/mathieu.tex b/sections/mathieu.tex
@@ -607,7 +607,7 @@ extension of \(M\).
   \]
   is indeed a semisimple coherent family of degree \(d\).
 
-  We know from examples~\ref{ex:submod-is-weight-mod} and
+  We know from Examples~\ref{ex:submod-is-weight-mod} and
   \ref{ex:quotient-is-weight-mod} that each quotient
   \(\mfrac{\mathcal{M}_{\lambda i + 1}}{\mathcal{M}_{\lambda i}}\) is a weight
   module. Hence \(\mathcal{M}^{\operatorname{ss}}\) is a weight module.