- Commit
- d345d2aecb5bce9140ab0a1a36533414dcccbdb0
- Parent
- 4450a741f62295de32729f0b22922067259add37
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Added the example of the sl2-module on Laurent polynomials
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Added the example of the sl2-module on Laurent polynomials
1 file changed, 32 insertions, 0 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/mathieu.tex | 32 | 32 | 0 |
diff --git a/sections/mathieu.tex b/sections/mathieu.tex @@ -81,6 +81,31 @@ \mathfrak{h}^* : \dim V_\lambda = d \}\). \end{definition} +\begin{example}\label{ex:laurent-polynomial-mod} + There is a natural action of \(\mathfrak{sl}_2(K)\) in the space \(K[x, + x^{-1}]\) of Laurent polynomials given by the formulas in + (\ref{eq:laurent-polynomials-cusp-mod}). One can quickly verify \(K[x, + x^{-1}]_{2 k} = K x^k\) and \(K[x, x^{-1}]_\lambda = 0\) for any \(\lambda + \notin 2 \mathbb{Z}\), so that \(K[x, x^{-1}] = \bigoplus_{k \in \mathbb{Z}} + K x^k\) is a degree \(1\) admissible weight \(\mathfrak{sl}_2(K)\)-module. It + follows from example~\ref{ex:submod-is-weight-mod} that any non-zero + subrepresentation \(W \subset K[x, x^{-1}]\) must contain a monomial \(x^k\). + But since the operators \(-\frac{\mathrm{d}}{\mathrm{d}x} + \frac{x^{-1}}{2}, + x^2 \frac{\mathrm{d}}{\mathrm{d}x} + \frac{x}{2} : K[x, x^{-1}] \to K[x, + x^{-1}]\) are both injective, this implies all other monomials can be found + in \(W\) by successively applaying \(f\) and \(e\). Hence \(W = K[x, + x^{-1}]\) and \(K[x, x^{-1}]\) is an irreducible representation. + \begin{align}\label{eq:laurent-polynomials-cusp-mod} + f \cdot p + & = \left(- \frac{\mathrm{d}}{\mathrm{d}x} + \frac{x^{-1}}{2} \right) p & + h \cdot p + & = 2 x \frac{\mathrm{d}}{\mathrm{d}x} p & + e \cdot p + & = \left( x^2 \frac{\mathrm{d}}{\mathrm{d}x} + \frac{x}{2} \right) p + \end{align} +\end{example} + +% TODO: Point out supp_ess K[x^+-1] is 2Z, which is zariski dense % This proof is very technical, I don't think its worth including it \begin{proposition} Let \(V\) be an infinite-dimensional admissible representation of @@ -171,6 +196,13 @@ \end{enumerate} \end{corollary} +\begin{example} + As noted in example~\ref{ex:laurent-polynomial-mod}, the elements \(e, f \in + \mathfrak{sl}_2(K)\) both act injectively in the space of Laurent + polynomials. Hence \(K[x, x^{-1}]\) is a cuspidal representation of + \(\mathfrak{sl}_2(K)\). +\end{example} + \begin{proposition} If \(\mathfrak{g} = \mathfrak{z} \oplus \mathfrak{s}_1 \oplus \cdots \oplus \mathfrak{s}_n\), where \(\mathfrak{z}\) is the center of \(\mathfrak{g}\)