- Commit
- f4df5a41622960746aaf11ba08795d47e59f00ca
- Parent
- f2b649f66c75aba0a70f1b5c7ab19f258edc6866
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Fixed a typo
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Fixed a typo
1 file changed, 1 insertion, 1 deletion
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/mathieu.tex | 2 | 1 | 1 |
diff --git a/sections/mathieu.tex b/sections/mathieu.tex @@ -841,7 +841,7 @@ deemed informative enough to be included in here, but see the proof of Lemma \bigcup_{\substack{V \subset \mathcal{U}(\mathfrak{g})_0 \\ \dim V = d}} U_V, \] - where \(U_V = \{\lambda \in \mathcal{U}(\mathfrak{g})_0 : \operatorname{rank} + where \(U_V = \{\lambda \in \mathfrak{h}^* : \operatorname{rank} B_\lambda\!\restriction_V = d^2 \}\). Here \(V\) ranges over all \(d\)-dimensional subspaces of \(\mathcal{U}(\mathfrak{g})_0\) -- \(V\) is not necessarily a \(\mathcal{U}(\mathfrak{g})_0\)-submodule.