lie-algebras-and-their-representations

Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules

Commit
f6b00998454c155b94e245d21b6c7d6d3061d9e8
Parent
06cc1a53ecf4084e1b0322d45661715cb1c54849
Author
Pablo <pablo-escobar@riseup.net>
Date

Fixed a typo

Diffstat

1 file changed, 1 insertion, 1 deletion

Status File Name N° Changes Insertions Deletions
Modified sections/mathieu.tex 2 1 1
diff --git a/sections/mathieu.tex b/sections/mathieu.tex
@@ -104,7 +104,7 @@ to the case it holds. This brings us to the following definition.
       \left(\mfrac{V}{W}\right)_\lambda \arrow{d} \\
       \mfrac{\mathcal{U}(\mathfrak{h})}{\mathfrak{m}_\lambda}
       \otimes_{\mathcal{U}(\mathfrak{h})} V
-      \arrow[swap]{r}{\pi \otimes \operatorname{id}} &
+      \arrow[swap]{r}{\operatorname{id} \otimes \pi} &
       \mfrac{\mathcal{U}(\mathfrak{h})}{\mathfrak{m}_\lambda}
       \otimes_{\mathcal{U}(\mathfrak{h})} \mfrac{V}{W}
     \end{tikzcd}