- Commit
- fa77efc8dfa5dbab55b3ce7fe1c6cbc202aef6de
- Parent
- f4e5e01eb519014cdbe3a9a6664e1a4ce912858f
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Removed an unnecessary file
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Removed an unnecessary file
1 file changed, 0 insertions, 896 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Deleted | ] | 896 | 0 | 896 |
diff --git a/] b/] @@ -1,896 +0,0 @@ -\chapter{Irreducible Weight Modules}\label{ch:mathieu} - -\begin{definition} - A representation \(V\) of \(\mathfrak{g}\) is called a \emph{weight - \(\mathfrak{g}\)-module} if \(V = \bigoplus_{\lambda \in \mathfrak{h}^*} - V_\lambda\) and \(\dim V_\lambda < \infty\) for all \(\lambda \in - \mathfrak{h}^*\). The \emph{support of \(V\)} is the set - \(\operatorname{supp} V = \{\lambda \in \mathfrak{h}^* : V_\lambda \ne 0\}\). -\end{definition} - -\begin{example} - Corollary~\ref{thm:finite-dim-is-weight-mod} is equivalent to the fact that - every finite-dimensional representation of a semisimple Lie algebra is a - weight module. More generally, every finite-dimensional irreducible - representation of a reductive Lie algebra is a weight module. -\end{example} - -\begin{example}\label{ex:submod-is-weight-mod} - Proposition~\ref{thm:verma-is-weight-mod} and - proposition~\ref{thm:max-verma-submod-is-weight} imply that the Verma module - \(M(\lambda)\) and its maximal subrepresentation are both weight modules. In - fact, the proof of proposition~\ref{thm:max-verma-submod-is-weight} is - actually a proof of the fact that every subrepresentation \(W \subset V\) of - a weight module \(V\) is a weight module, and \(W_\lambda = V_\lambda \cap - W\) for all \(\lambda \in \mathfrak{h}^*\). -\end{example} - -\begin{example}\label{ex:quotient-is-weight-mod} - Given a weight module \(V\), a submodule \(W \subset V\) and \(\lambda \in - \mathfrak{h}^*\), \(\left(\mfrac{V}{W}\right)_\lambda = \mfrac{V_\lambda}{W} - \cong \mfrac{V_\lambda}{W_\lambda}\). In particular, - \[ - \mfrac{V}{W} - = \bigoplus_{\lambda \in \mathfrak{h}^*} \left(\mfrac{V}{W}\right)_\lambda - \] - is a weight module. It is clear that \(\mfrac{V_\lambda}{W} \subset - \left(\mfrac{V}{W}\right)_\lambda\). To see that \(\mfrac{V_\lambda}{W} = - \left(\mfrac{V}{W}\right)_\lambda\), we remark that \(V_\lambda \cong - \mfrac{\mathcal{U}(\mathfrak{h})}{\mathfrak{m}_\lambda} - \otimes_{\mathcal{U}(\mathfrak{h})} V\) as \(\mathfrak{h}\)-modules, where - \(\mathfrak{m}_\lambda \normal \mathcal{U}(\mathfrak{h})\) is the left ideal - generated by the elements \(H - \lambda(H)\), \(H \in \mathfrak{h}\). - Likewise \(\left(\mfrac{V}{W}\right)_\lambda \cong - \mfrac{\mathcal{U}(\mathfrak{h})}{\mathfrak{m}_\lambda} - \otimes_{\mathcal{U}(\mathfrak{h})} \mfrac{V}{W}\) and the diagram - \begin{center} - \begin{tikzcd} - V_\lambda \arrow{d} \arrow{r}{\pi} & - \left(\mfrac{V}{W}\right)_\lambda \arrow{d} \\ - \mfrac{\mathcal{U}(\mathfrak{h})}{\mathfrak{m}_\lambda} - \otimes_{\mathcal{U}(\mathfrak{h})} V - \arrow[swap]{r}{\pi \otimes \operatorname{id}} & - \mfrac{\mathcal{U}(\mathfrak{h})}{\mathfrak{m}_\lambda} - \otimes_{\mathcal{U}(\mathfrak{h})} \mfrac{V}{W} - \end{tikzcd} - \end{center} - commutes, so that the projection \(V_\lambda \to - \left(\mfrac{V}{W}\right)_\lambda\) is surjective. -\end{example} - -% TODO: Add an example of a module wich is NOT a weight module - -% TODOO: Prove this? Most likely not! -\begin{proposition}\label{thm:centralizer-multiplicity} - Let \(V\) be a completely reducible weight \(\mathfrak{g}\)-module. Then - \(V_\lambda\) is a semisimple - \(\mathcal{U}(\mathfrak{g})_0\)-module for any \(\lambda \in - \mathfrak{h}^*\), where \(\mathcal{U}(\mathfrak{g})_0\) is - the cetralizer of \(\mathfrak{h}\) in \(\mathcal{U}(\mathfrak{g})\). - Moreover, the multiplicity of a given irreducible representation - \(W\) of \(\mathfrak{g}\) coincides with the multiplicity of \(W_\lambda\) in - \(V_\lambda\) as a \(\mathcal{U}(\mathfrak{g})_0\)-module, - for any \(\lambda \in \operatorname{supp} V\). -\end{proposition} - -\begin{definition} - A weight \(\mathfrak{g}\)-module is called \emph{admissible} if \(\dim - V_\lambda\) is bounded. The lowest upper bound for \(\dim V_\lambda\) is - called \emph{the degree of \(V\)}. The \emph{essential support} of \(V\) is - the set \(\operatorname{supp}_{\operatorname{ess}} V = \{ \lambda \in - \mathfrak{h}^* : \dim V_\lambda = d \}\). -\end{definition} - -\begin{example}\label{ex:laurent-polynomial-mod} - There is a natural action of \(\mathfrak{sl}_2(K)\) in the space \(K[x, - x^{-1}]\) of Laurent polynomials given by the formulas in - (\ref{eq:laurent-polynomials-cusp-mod}). One can quickly verify \(K[x, - x^{-1}]_{2 k} = K x^k\) and \(K[x, x^{-1}]_\lambda = 0\) for any \(\lambda - \notin 2 \mathbb{Z}\), so that \(K[x, x^{-1}] = \bigoplus_{k \in \mathbb{Z}} - K x^k\) is a degree \(1\) admissible weight \(\mathfrak{sl}_2(K)\)-module. It - follows from example~\ref{ex:submod-is-weight-mod} that any non-zero - subrepresentation \(W \subset K[x, x^{-1}]\) must contain a monomial \(x^k\). - But since the operators \(-\frac{\mathrm{d}}{\mathrm{d}x} + \frac{x^{-1}}{2}, - x^2 \frac{\mathrm{d}}{\mathrm{d}x} + \frac{x}{2} : K[x, x^{-1}] \to K[x, - x^{-1}]\) are both injective, this implies all other monomials can be found - in \(W\) by successively applaying \(f\) and \(e\). Hence \(W = K[x, - x^{-1}]\) and \(K[x, x^{-1}]\) is an irreducible representation. - \begin{align}\label{eq:laurent-polynomials-cusp-mod} - f \cdot p - & = \left(- \frac{\mathrm{d}}{\mathrm{d}x} + \frac{x^{-1}}{2} \right) p & - h \cdot p - & = 2 x \frac{\mathrm{d}}{\mathrm{d}x} p & - e \cdot p - & = \left( x^2 \frac{\mathrm{d}}{\mathrm{d}x} + \frac{x}{2} \right) p - \end{align} -\end{example} - -% TODO: Point out supp_ess K[x^+-1] is 2Z, which is zariski dense -% This proof is very technical, I don't think its worth including it -\begin{proposition} - Let \(V\) be an infinite-dimensional admissible representation of - \(\mathfrak{g}\). The essential support - \(\operatorname{supp}_{\operatorname{ess}} V\) is Zariski-dense in - \(\mathfrak{h}^*\). -\end{proposition} - -\begin{definition} - A subalgebra \(\mathfrak{p} \subset \mathfrak{g}\) is called \emph{parabolic} - if \(\mathfrak{b} \subset \mathfrak{p}\). -\end{definition} - -% TODO: Comment afterwords that the Verma modules are indeed generalized Verma -% modules -\begin{definition} - Given a parabolic subalgebra \(\mathfrak{p} \subset \mathfrak{g}\) and a - \(\mathfrak{p}\)-module \(V\) the module \(M_{\mathfrak{p}}(V) = - \operatorname{Ind}_{\mathfrak{p}}^{\mathfrak{g}} V\) is called \emph{a - generalized Verma module}. -\end{definition} - -\begin{proposition} - Given an irreducible \(\mathfrak{p}\)-module \(V\), the generalized Verma - module \(M_{\mathfrak{p}}(V)\) has a unique maximal subrepresentation - \(N_{\mathfrak{p}}(V)\) and a unique irreducible quotient - \(L_{\mathfrak{p}}(V) = \mfrac{M_{\mathfrak{p}}(V)}{N_{\mathfrak{p}}(V)}\). - The irreducible quotient \(L_{\mathfrak{p}}(V)\) is a weight module. -\end{proposition} - -\begin{definition} - An irreducible \(\mathfrak{g}\)-module is called \emph{parabolic induced} if - it is isomorphic to \(L_{\mathfrak{p}}(V)\) for some proper parabolic - subalgebra \(\mathfrak{p} \subsetneq \mathfrak{g}\) and some - \(\mathfrak{p}\)-module \(V\). An \emph{irreducible cuspidal - \(\mathfrak{g}\)-module} is an irreducible representation of \(\mathfrak{g}\) - which is \emph{not} parabolic induced. -\end{definition} - -% TODO: Remark on the fact that any simple weight p-mod is a (p/u)-mod, so that -% the notation of a cuspidal p-mod is well definited -% TODO: Define the conjugation of a p-mod by an element of the Weil group? -\begin{theorem}[Fernando] - Any irreducible weight \(\mathfrak{g}\)-module is isomorphic to - \(L_{\mathfrak{p}}(V)\) for some parabolic subalgebra \(\mathfrak{p} \subset - \mathfrak{g}\) and some irreducible cuspidal \(\mathfrak{p}\)-module \(V\). -\end{theorem} - -% TODO: Point out that the relationship between p-modules and cuspidal -% g-modules is not 1-to-1 - -\begin{proposition}[Fernando] - Given a parabolic subalgebra \(\mathfrak{p} \subset \mathfrak{g}\), there - exists a basis\footnote{This is usually called \emph{a $\mathfrak{p}$-adapted - basis}} \(\Sigma\) for \(\Delta\) such that \(\Sigma \subset - \Delta_{\mathfrak{p}_1}\). Furthermore, if \(\mathfrak{p}' \subset - \mathfrak{g}\) is another parabolic subalgebra, \(V\) is an irreducible - cuspidal \(\mathfrak{p}\)-module and \(W\) is an irreducible cuspidal - \(\mathfrak{p}'\)-module then \(L_{\mathfrak{p}}(V) \cong - L_{\mathfrak{p}'}(W)\) if, and only if \(\mathfrak{p}' = \mathfrak{p}^w\) and - \(W \cong V^w\) for some \(w \in \mathcal{W}_V\), where - \[ - \mathcal{W}_V - = \langle - T_\beta : \beta \in \Sigma, H_\beta + \mathfrak{u} - \ \text{is central in}\ \mfrac{\mathfrak{p}}{\mathfrak{u}} - \ \text{and}\ H_\beta\ \text{acts as a positive integer in}\ V - \rangle - \subset \mathcal{W} - \] -\end{proposition} - -% TODO: Point out that the definition of W_V is independant of the choice of -% Sigma - -% TODO: Remark that the support of a simple weight module is always contained -% in a coset -\begin{corollary}[Fernando]\label{thm:cuspidal-mod-equivs} - Let \(V\) be an irreducible weight \(\mathfrak{g}\)-module. The following - conditions are equivalent. - \begin{enumerate} - \item \(V\) is cuspidal. - \item \(F_\alpha\) acts injectively\footnote{This is what's usually refered - to as a \emph{dense} representation in the literature.} in \(V\) for all - \(\alpha \in \Delta\). - \item The support of \(V\) is precisely one \(Q\)-coset\footnote{This is - what's usually referred to as a \emph{torsion-free} representation in the - literature.}. - \end{enumerate} -\end{corollary} - -\begin{example} - As noted in example~\ref{ex:laurent-polynomial-mod}, the element \(f \in - \mathfrak{sl}_2(K)\) acts injectively in the space of Laurent polynomials. - Hence \(K[x, x^{-1}]\) is a cuspidal representation of - \(\mathfrak{sl}_2(K)\). -\end{example} - -% TODOO: Do we need this proposition? I think this only comes up in the -% classification of simple completely reducible coherent families -\begin{proposition} - If \(\mathfrak{g} = \mathfrak{z} \oplus \mathfrak{s}_1 \oplus \cdots \oplus - \mathfrak{s}_n\), where \(\mathfrak{z}\) is the center of \(\mathfrak{g}\) - and \(\mathfrak{s}_i\) is a simple component of \(\mathfrak{g}\), then any - irreducible weight \(\mathfrak{g}\)-module \(V\) decomposes as - \[ - V = Z \otimes V_1 \otimes \cdots \otimes V_n - \] - where \(Z\) is a 1-dimensional representation of \(\mathfrak{z}\) and \(V_i\) - is an irreducible weight \(\mathfrak{s}_i\)-module. -\end{proposition} - -\begin{definition} - A \emph{coherent family \(\mathcal{M}\) of degree \(d\)} is a weight - \(\mathfrak{g}\)-module \(\mathcal{M}\) such that - \begin{enumerate} - \item \(\dim \mathcal{M}_\lambda = d\) for \emph{all} \(\lambda \in - \mathfrak{h}^*\) - \item For any \(u \in \mathcal{U}(\mathfrak{g})\) in the centralizer - \(\mathcal{U}(\mathfrak{g})_0\) of \(\mathfrak{h}\) in - \(\mathcal{U}(\mathfrak{g})\), the map - \begin{align*} - \mathfrak{h}^* & \to K \\ - \lambda & \mapsto - \operatorname{Tr}(u\!\restriction_{\mathcal{M}_\lambda}) - \end{align*} - is polynomial in \(\lambda\). - \end{enumerate} -\end{definition} - -% TODO: Add an example: there's an example of a coherent sl2-family in -% Mathieu's paper -% TODO: Add a discussion on how this may sound unintuitive, but the motivation -% comes from the relationship between highest weight modules and coherent -% families - -% TODO: Point out this is equivalent to M being a simple object in the -% category of coherent families -\begin{definition} - A coherent family \(\mathcal{M}\) is called \emph{irreducible} if - \(\mathcal{M}_\lambda\) is a simple - \(\mathcal{U}(\mathfrak{g})_0\)-module for some \(\lambda \in - \mathfrak{h}^*\). -\end{definition} - -\begin{definition} - Given an admissible representation \(V\) of \(\mathfrak{g}\) of degree \(d\), - a coherent extension \(\mathcal{M}\) of \(V\) is a coherent family - \(\mathcal{M}\) of degree \(d\) that contains \(V\) as a subquotient. -\end{definition} - -% Mathieu's proof of this is somewhat profane, I don't think it's worth -% including it in here -% TODO: Define the notation for M[mu] somewhere else -% TODO: Note somewhere that M[mu] is a submodule -\begin{lemma} - Given a coherent family \(\mathcal{M}\) and \(\lambda \in \mathfrak{h}^*\), - \(\mathcal{M}[\lambda]\) has finite length as a \(\mathfrak{g}\)-module. -\end{lemma} - -% TODO: From this we may conclude that any admissible submodule is a submodule -% of the semisimplification of any of its coherent extensions -\begin{corollary} - Let \(\mathcal{M}\) be a coherent family of degree \(d\). There exists a - unique completely reducible coherent family - \(\mathcal{M}^{\operatorname{ss}}\) of degree \(d\) such that the composition - series of \(\mathcal{M}^{\operatorname{ss}}[\lambda]\) is the same as that of - \(\mathcal{M}[\lambda]\) for all \(\lambda \in \mathfrak{h}^*\), called - \emph{the semisimplification\footnote{Recall that a ``semisimple'' is a - synonim for ``completely reducible'' in the context of modules.} of - \(\mathcal{M}\)}. - - Namely, if \(\{\lambda_i\}_i\) is a set of representatives of the - \(Q\)-cosets of \(\mathfrak{h}^*\) and \(0 = \mathcal{M}_{i 0} \subset - \mathcal{M}_{i 1} \subset \cdots \subset \mathcal{M}_{i n_i} = - \mathcal{M}[\lambda_i]\) is a composition series, - \[ - \mathcal{M}^{\operatorname{ss}} - \cong \bigoplus_{i j} \mfrac{\mathcal{M}_{i j + 1}}{\mathcal{M}_{i j}} - \] -\end{corollary} - -\begin{proof} - The uniqueness of \(\mathcal{M}^{\operatorname{ss}}\) should be clear: - since \(\mathcal{M}^{\operatorname{ss}}\) is completely reducible, so is - \(\mathcal{M}^{\operatorname{ss}}[\lambda_i]\). Hence - \[ - \mathcal{M}^{\operatorname{ss}}[\lambda_i] - \cong \bigoplus_j \mfrac{\mathcal{M}_{i j + 1}}{\mathcal{M}_{i j}} - \] - - As for the existence of the semisimplification, it suffices to show - \[ - \mathcal{M}^{\operatorname{ss}} - = \bigoplus_{i j} \mfrac{\mathcal{M}_{i j + 1}}{\mathcal{M}_{i j}} - \] - is indeed a completely reducible coherent family of degree \(d\). - - We know from examples~\ref{ex:submod-is-weight-mod} and - \ref{ex:quotient-is-weight-mod} that each quotient \(\mfrac{\mathcal{M}_{i j - + 1}}{\mathcal{M}_{i j}}\) is a weight module. Hence - \(\mathcal{M}^{\operatorname{ss}}\) is a weight module. Furthermore, given - \(\mu \in \lambda_k + Q\) - \[ - \mathcal{M}_\mu^{\operatorname{ss}} - = \bigoplus_{i j} - \left( - \mfrac{\mathcal{M}_{i j + 1}}{\mathcal{M}_{i j}} - \right)_\mu - = \bigoplus_j - \left( - \mfrac{\mathcal{M}_{k j + 1}}{\mathcal{M}_{k j}} - \right)_\mu - \cong \bigoplus_j - \mfrac{(\mathcal{M}_{k j + 1})_\mu} - {(\mathcal{M}_{k j})_\mu} - \] - - In particular, - \[ - \dim \mathcal{M}_\mu^{\operatorname{ss}} - = \sum_j - \dim (\mathcal{M}_{k j + 1})_\mu - - \dim (\mathcal{M}_{k j})_\mu - = \dim \mathcal{M}[\lambda_k]_\mu - = \dim \mathcal{M}_\mu - = d - \] - - Likewise, given \(u \in \mathcal{U}(\mathfrak{g})_0\) the value - \[ - \operatorname{Tr}(u\!\restriction_{\mathcal{M}_\mu^{\operatorname{ss}}}) - = \sum_j - \operatorname{Tr}(u\!\restriction_{(\mathcal{M}_{k j + 1})_\mu}) - - \operatorname{Tr}(u\!\restriction_{(\mathcal{M}_{k j})_\mu}) - = \operatorname{Tr}(u\!\restriction_{\mathcal{M}[\lambda_k]_\mu}) - = \operatorname{Tr}(u\!\restriction_{\mathcal{M}_\mu}) - \] - is polynomial in \(\mu \in \mathfrak{h}^*\). -\end{proof} - -\begin{corollary}\label{thm:admissible-is-submod-of-extension} - Let \(V\) be an irreducible admissible \(\mathfrak{g}\)-module and - \(\mathcal{M}\) be a completely reducible coherent extension of \(V\). Then - \(V\) is contained in \(\mathcal{M}\). -\end{corollary} - -\begin{proof} - Since \(V\) is irreducible, its support is contained in a single \(Q\)-coset. - This implies that \(V\) is a subquotient of \(\mathcal{M}[\lambda]\) for any - \(\lambda \in \operatorname{supp} V\). If we fix some composition series \(0 - = \mathcal{M}_0 \subset \mathcal{M}_1 \subset \cdots \subset \mathcal{M}_n = - \mathcal{M}[\lambda]\) of \(\mathcal{M}[\lambda]\) with \(V \cong - \mfrac{\mathcal{M}_{i + 1}}{\mathcal{M}_i}\), there is a natural inclusion - \[ - V - \isoto \mfrac{\mathcal{M}_{i + 1}}{\mathcal{M}_i} - \to \bigoplus_j \mfrac{\mathcal{M}_{j + 1}}{\mathcal{M}_j} - \cong \mathcal{M}^{\operatorname{ss}}[\lambda] - \] - - It then follows from the uniqueness of the semisimplification of - \(\mathcal{M}\) that \(\mathcal{M} \cong \mathcal{M}^{\operatorname{ss}}\), - so we have an inclusion \(V \to \mathcal{M}\). -\end{proof} - -\begin{lemma} - Let \(\mathcal{M}\) be a coherent family. The set \(U = \{\lambda \in - \mathfrak{h}^* : \mathcal{M}_\lambda \ \text{is a simple - $\mathcal{U}(\mathfrak{g})_0$-module}\}\) is Zariski-open. -\end{lemma} - -\begin{proof} - For each \(\lambda \in \mathfrak{h}^*\) we introduce the bilinear form - \begin{align*} - B_\lambda : \mathcal{U}(\mathfrak{g})_0 \times \mathcal{U}(\mathfrak{g})_0 - & \to K \\ - (u, v) - & \mapsto \operatorname{Tr}(u v \!\restriction_{\mathcal{M}_\lambda}) - \end{align*} - and consider its rank -- i.e. the dimension of the image of the induced - operator - \begin{align*} - \mathcal{U}(\mathfrak{g})_0 & \to \mathcal{U}(\mathfrak{g})_0^* \\ - u & \mapsto B_\lambda(u, \cdot) - \end{align*} - - Our first observation is that \(\operatorname{rank} B_\lambda \le d^2\). This - follows from the commutativity of - \begin{center} - \begin{tikzcd} - \mathcal{U}(\mathfrak{g})_0 \arrow{r} \arrow{d} & - \mathcal{U}(\mathfrak{g})_0^* \\ - \operatorname{End}(\mathcal{M}_\lambda) \arrow{r}{\sim} & - \operatorname{End}(\mathcal{M}_\lambda)^* \arrow{u} - \end{tikzcd}, - \end{center} - where the map \(\mathcal{U}(\mathfrak{g})_0 \to - \operatorname{End}(\mathcal{M}_\lambda)\) is given by the action of - \(\mathcal{U}(\mathfrak{g})_0\), the map - \(\operatorname{End}(\mathcal{M}_\lambda)^* \to - \mathcal{U}(\mathfrak{g})_0^*\) is its dual, and the isomorphism - \(\operatorname{End}(\mathcal{M}_\lambda) \isoto - \operatorname{End}(\mathcal{M}_\lambda)^*\) is induced by the trace form - \begin{align*} - \operatorname{End}(\mathcal{M}_\lambda) \times - \operatorname{End}(\mathcal{M}_\lambda) & \to K \\ - (T, S) & \mapsto \operatorname{Tr}(T S) - \end{align*} - - Indeed, \(\operatorname{rank} B_\lambda \le - \operatorname{rank}(\mathcal{U}(\mathfrak{g})_0 \to - \operatorname{End}(\mathcal{M}_\lambda)) \le \dim - \operatorname{End}(\mathcal{M}_\lambda) = d^2\). Furthermore, if - \(\operatorname{rank} B_\lambda = d^2\) then we must have - \(\operatorname{rank}(\mathcal{U}(\mathfrak{g})_0 \to - \operatorname{End}(\mathcal{M}_\lambda)) = d^2\) -- i.e. the map - \(\mathcal{U}(\mathfrak{g})_0 \to \operatorname{End}(\mathcal{M}_\lambda)\) - is surjective. In particular, if \(\operatorname{rank} B_\lambda = d^2\) then - \(\mathcal{M}_\lambda\) is a simple \(\mathcal{U}(\mathfrak{g})_0\)-module, - for if \(V \subset \mathcal{M}_\lambda\) is invariant under the action of - \(\mathcal{U}(\mathfrak{g})_0\) then \(V\) is invariant under any - \(K\)-linear operator \(\mathcal{M}_\lambda \to \mathcal{M}_\lambda\), so - that \(W = 0\) or \(W = \mathcal{M}_\lambda\). - - On the other hand, if \(\mathcal{M}_\lambda\) is simple then by Burnside's - theorem on matrix algebras the map \(\mathcal{U}(\mathfrak{g})_0 \to - \operatorname{End}(\mathcal{M}_\lambda)\) is surjective. Hence the - commutativity of the previously drawn diagram, as well as the fact that - \(\operatorname{rank}(\mathcal{U}(\mathfrak{g})_0 \to - \operatorname{End}(\mathcal{M}_\lambda)) = - \operatorname{rank}(\operatorname{End}(\mathcal{M}_\lambda)^* \to - \mathcal{U}(\mathfrak{g})_0^*)\), imply that \(\operatorname{rank} B_\lambda - = d^2\). This goes to show that \(U\) is precisely the set of \(\lambda\) - such that \(B_\lambda\) has maximal rank \(d^2\). We now show that \(U\) is - Zariski-open. First, notice that - \[ - U = - \bigcup_{\substack{W \subset \mathcal{U}(\mathfrak{g})_0 \\ \dim W = d^2}} - U_W, - \] - where \(U_W = \{\lambda \in \mathcal{U}(\mathfrak{g})_0 : \operatorname{rank} - B_\lambda\!\restriction_W = d^2 \}\). - - Indeed, if \(\operatorname{rank} B_\lambda = d^2\) it follows from the - surjectivity of the map \(\mathcal{U}(\mathfrak{g})_0 \to - \operatorname{End}(\mathcal{M}_\lambda)\) that there is some \(W \subset - \mathcal{U}(\mathfrak{g})_0\) with \(\dim W = d^2\) such that the restriction - \(W \to \operatorname{End}(\mathcal{M}_\lambda)\) is surjective. The - comutativity of - \begin{center} - \begin{tikzcd} - W \arrow{r} \arrow{d} & W^* \\ - \operatorname{End}(\mathcal{M}_\lambda) \arrow{r}{\sim} & - \operatorname{End}(\mathcal{M}_\lambda)^* \arrow{u} - \end{tikzcd} - \end{center} - then implies \(\operatorname{rank} B_\lambda\!\restriction_W = d^2\). In - other words, \(U \subset \bigcup_W U_W\). - - Likewise, if \(\operatorname{rank} B_\lambda\!\restriction_W = d^2\) for some - \(W\), then the commutativity of - \begin{center} - \begin{tikzcd} - W \arrow{r} \arrow{d} & W^* \\ - \mathcal{U}(\mathfrak{g})_0 \arrow{r} & - \mathcal{U}(\mathfrak{g})_0^* \arrow{u} - \end{tikzcd} - \end{center} - implies \(\operatorname{rank} B_\lambda \ge d^2\), which goes to show - \(\bigcup_W U_W \subset U\). - - Given \(\lambda \in U_W\), the surjectivity of \(W \to - \operatorname{End}(\mathcal{M}_\lambda)\) and the fact that \(\dim W < - \infty\) imply \(W \to W^*\) is invertible. Since \(\mathcal{M}\) is a - coherent family, \(B_\lambda\) depends polynomialy in \(\lambda\). Hence so - does the induced maps \(W \to W^*\). In particular, there is some Zariski - neighborhood \(V\) of \(\lambda\) such that the map \(W \to W^*\) induced by - \(B_\mu\!\restriction_W\) is invertible for all \(\mu \in V\). - - But the surjectivity of the map induced by \(B_\mu\!\restriction_W\) implies - \(\operatorname{rank} B_\mu = d^2\), so \(\mu \in U_W\) and therefore \(V - \subset U_W\). This implies \(U_W\) is open for all \(W\). Finally, \(U\) is - the union of Zariski-open subsets and is therefore open. We are done. -\end{proof} - -\begin{theorem}[Mathieu] - Let \(\mathcal{M}\) be an irreducible coherent family of degree \(d\) and - \(\lambda \in \mathfrak{h}^*\). The following conditions are equivalent. - \begin{enumerate} - \item \(\mathcal{M}[\lambda]\) is irreducible. - \item \(F_\alpha\!\restriction_{\mathcal{M}[\lambda]}\) is injective for - all \(\alpha \in \Delta\). - \item \(\mathcal{M}[\lambda]\) is cuspidal. - \end{enumerate} -\end{theorem} - -\begin{proof} - The fact that \strong{(i)} and \strong{(iii)} are equivalent follows directly - from corollary~\ref{thm:cuspidal-mod-equivs}. Likewise, it is clear from the - corollary that \strong{(iii)} implies \strong{(ii)}. All it's left is to show - \strong{(ii)} implies \strong{(iii)}. - - Suppose \(F_\alpha\) acts injectively in the subrepresentation - \(\mathcal{M}[\lambda]\), for all \(\alpha \in \Delta\). Since - \(\mathcal{M}[\lambda]\) has finite length, \(\mathcal{M}[\lambda]\) contains - an infinite-dimensiona irreducible \(\mathfrak{g}\)-submodule \(V\). - Moreover, again by corollary~\ref{thm:cuspidal-mod-equivs} we conclude \(V\) - is a cuspidal representation, and its degree is bounded by \(d\). We claim - \(\mathcal{M}[\lambda] = V\). - - Since \(\mathcal{M}\) is irreducible and - \(\operatorname{supp}_{\operatorname{ess}} V\) is Zariski-dense, \(U = \{\mu - \in \mathfrak{h}^* : \mathcal{M}_\mu \ \text{is a simple - $\mathcal{U}(\mathfrak{g})_0$-module}\}\) is a non-empty open set, and \(U - \cap \operatorname{supp}_{\operatorname{ess}} V\) is non-empty. In other - words, there is some \(\mu \in \mathfrak{h}^*\) such that \(\mathcal{M}_\mu\) - is a simple \(\mathcal{U}(\mathfrak{g})_0\)-module and \(\dim V_\mu = \deg - V\). - - In particular, \(V_\mu \ne 0\), so \(V_\mu = \mathcal{M}_\mu\). Now given any - irreducible \(\mathfrak{g}\)-module \(W\), the multiplicity of \(W\) in - \(\mathcal{M}[\lambda]\) is the same as the multiplicity \(W_\mu\) in - \(\mathcal{M}_\mu\) as a \(\mathcal{U}(\mathfrak{g})_0\)-module, which is, of - course, \(1\) if \(W \cong V\) and \(0\) otherwise. Hence - \(\mathcal{M}[\lambda] = V\) and \(\mathcal{M}[\lambda]\) is cuspidal. -\end{proof} - -\section{Localizations \& the Existance of Coherent Extensions} - -% TODO: Comment on the intuition behind the proof: we can get vectors in a -% given eigenspace by translating by the F's and E's, but neither of those are -% injective in general, so the translation could take nonzero vectors to zero. -% If the F's were invertible this problem wouldn't exist, so we might as well -% invert them by force! - -\begin{definition} - Let \(R\) be a ring. A subset \(S \subset R\) is called \emph{multiplicative} - if \(s \cdot t \in S\) for all \(s, t \in S\) and \(0 \notin S\). A - multiplicative subset \(S\) is said to satisfy \emph{Ore's localization - condition} if for each \(r \in R\), \(s \in S\) there exists \(u_1, u_2 \in - R\) and \(t_1, t_2 \in S\) such that \(s r = u_1 t_1\) and \(r s = t_2 u_2\). -\end{definition} - -\begin{theorem}[Ore-Asano] - Let \(S \subset R\) be a multiplicative subset satisfying Ore's localization - condition. Then there exists a (unique) ring \(S^{-1} R\), with a canonical - ring homomorphism \(R \to S^{-1} R\), and enjoying the universal property - that each ring homomorphism \(f : R \to T\) such that \(f(s)\) is invertible - for all \(s \in S\) can be uniquely extended to a ring homomorphism \(S^{-1} - R \to T\). \(S^{-1} R\) is called \emph{the localization of \(R\) by \(S\)}, - and the map \(R \to S^{-1} R\) is called \emph{the localization map}. - \begin{center} - \begin{tikzcd} - S^{-1} R \arrow[dotted]{rd} & \\ - R \arrow{u} \arrow[swap]{r}{f} & T - \end{tikzcd} - \end{center} -\end{theorem} - -% TODO: Cite the discussion of goodearl-warfield, chap 6, on how to derive the -% localization condition -% TODO: In general checking that a set satisfies Ore's condition can be tricky, -% but there is an easyer condition given by the lemma - -\begin{lemma} - Let \(S \subset R\) be a multiplicative subset generated by locally - \(\operatorname{ad}\)-nilpotent elements -- i.e. elements \(s \in S\) such - that for each \(r \in R\) there exists \(n > 0\) such that \(\operatorname{ad}(s)^n r = [s, [s, \cdots - [s, r]]\cdots] = 0\). Then \(S\) satisfies Ore's - localization condition. -\end{lemma} - -\begin{definition} - Let \(S \subset R\) be a multiplicative subset satisfying Ore's localization - condition and \(M\) be a \(R\)-module. The \(S^{-1} R\)-module \(S^{-1} M = - S^{-1} R \otimes_R M\) is called \emph{the localization of \(M\) by \(S\)}, - and the homomorphism of \(R\)-modules - \begin{align*} - M & \to S^{-1} M \\ - m & \mapsto 1 \otimes m - \end{align*} - is called \emph{the localization map of \(M\)}. -\end{definition} - -% TODO: Point out that the localization of modules is functorial - -% TODO: Point out the the localization map is in not injective in general -\begin{lemma} - Let \(S \subset R\) be a multiplicative subset satisfying Ore's localization - condition and \(M\) be a \(R\)-module. If \(S\) acts injectively in \(M\) - then the localization map \(M \to S^{-1} M\) is injective. In particular, if - \(S\) has no zero divisors then \(R\) is a subring of \(S^{-1} R\). -\end{lemma} - -% TODO: Point out that S^-1 M can be seen as a R-module, where R acts via the -% localization map -% TODO: Point out that each element of the localization has the form s^-1 r - -% TODO: Point out that Sigma depends on V! -\begin{lemma}\label{thm:nice-basis-for-inversion} - Let \(V\) be an irreducible infinite-dimensional admissible - \(\mathfrak{g}\)-module. There is a basis \(\Sigma = \{\beta_1, \ldots, - \beta_n\}\) of \(\Delta\) such that the elements \(F_{\beta_i}\) all act - injectively on \(V\) and satisfy \([F_{\beta_i}, F_{\beta_j}] = 0\). -\end{lemma} - -\begin{corollary} - Let \(\Sigma\) be as in lemma~\ref{thm:nice-basis-for-inversion} and - \((F_\beta)_{\beta \in \Sigma} \subset \mathcal{U}(\mathfrak{g})\) be the - multiplicative subset generated by the \(F_\beta\)'s. The \(K\)-algebra - \(\Sigma^{-1} \mathcal{U}(\mathfrak{g}) = (F_\beta)_{\beta \in \Sigma}^{-1} - \mathcal{U}(\mathfrak{g})\) is well defined. Moreover, if we denote by - \(\Sigma^{-1} V\) the localization of \(V\) by \((F_\beta)_{\beta \in - \Sigma}\), the localization map \(V \to \Sigma^{-1} V\) is injective. -\end{corollary} - -% TODO: Fix V and Sigma beforehand -\begin{proposition}\label{thm:irr-admissible-is-contained-in-nice-mod} - The the restriction of the localization \(\Sigma^{-1} V\) is an admissible - \(\mathfrak{g}\)-module of degree \(d\) with \(\operatorname{supp} - \Sigma^{-1} V = Q + \operatorname{supp} V\) and \(\dim \Sigma^{-1} V_\lambda - = d\) for all \(\lambda \in \operatorname{supp} \Sigma^{-1} V\). -\end{proposition} - -\begin{proof} - Fix some \(\beta \in \Sigma\). We begin by showing that \(F_\beta\) and - \(F_\beta^{-1}\) map the weight space \(\Sigma^{-1} V_\lambda\) to the weight - spaces \(\Sigma^{-1} V_{\lambda - \beta}\) and \(\Sigma^{-1} V_{\lambda + - \beta}\) respectively. Indeed, given \(v \in V_\lambda\) and \(H \in - \mathfrak{h}\) we have - \[ - H F_\beta v - = ([H, F_\beta] + F_\beta H)v - = F_\beta (-\beta(H) + H) v - = F_\beta (\lambda - \beta)(H) \cdot v - = (\lambda - \beta)(H) \cdot F_\beta v - \] - - On the other hand, - \[ - 0 - = [H, 1] - = [H, F_\beta F_\beta^{-1}] - = F_\beta [H, F_\beta^{-1}] + [H, F_\beta] F_\beta^{-1} - = F_\beta [H, F_\beta^{-1}] - \beta(H) F_\beta F_\beta^{-1}, - \] - so that \([H, F_\beta^{-1}] = \beta(H) \cdot F_\beta^{-1}\) and therefore - \[ - H F_\beta^{-1} v - = ([H, F_\beta^{-1}] + F_\beta^{-1} H) v - = F_\beta^{-1} (\beta(H) + H) v - = (\lambda + \beta)(H) \cdot F_\beta^{-1} v - \] - - From the fact that \(F_\beta^{\pm 1}\) maps \(V_\lambda\) to \(\Sigma^{-1} - V_{\lambda \pm \beta}\) follows our first conclusion: since \(V\) is a weight - module and every element of \(\Sigma^{-1} V\) has the form \(s^{-1} v = - s^{-1} \otimes v\) for \(s \in (F_\beta)_{\beta \in \Sigma}\) and \(v \in - V\), we can see that \(\Sigma^{-1} V = \bigoplus_\lambda \Sigma^{-1} - V_\lambda\). Furtheremore, since the action of each \(F_\beta\) in - \(\Sigma^{-1} V\) is bijective and \(\Sigma\) is a basis of \(Q\) we obtain - \(\operatorname{supp} \Sigma^{-1} V = Q + \operatorname{supp} V\). - - Again, because of the bijectivity of the \(F_\beta\)'s, to see that \(\dim - \Sigma^{-1} V_\lambda = d\) for all \(\lambda \in \operatorname{supp} - \Sigma^{-1} V\) it suffices to show that \(\dim \Sigma^{-1} V_\lambda = d\) - for some \(\lambda \in \operatorname{supp} \Sigma^{-1} V\). We may take - \(\lambda \in \operatorname{supp} V\) with \(\dim V_\lambda = d\). For any - finite-dimensional subspace \(W \subset \Sigma^{-1} V_\lambda\) we can find - \(s \in (F_\beta)_{\beta \in \Sigma}\) such that \(s W \subset V\). If \(s = - F_{\beta_{i_1}} \cdots F_{\beta_{i_n}}\), it is clear \(s W \subset - V_{\lambda - \beta_{i_1} - \cdots - \beta_{i_n}}\), so \(\dim W = \dim sW \le - d\). This holds for all finite-dimensional \(W \subset \Sigma^{-1} - V_\lambda\), so \(\dim \Sigma^{-1} V_\lambda \le d\). It then follows from - the fact that \(V_\lambda \subset \Sigma^{-1} V_\lambda\) that \(V_\lambda = - \Sigma^{-1} V_\lambda\) and therefore \(\dim \Sigma^{-1} V_\lambda = d\). -\end{proof} - -\begin{proposition}\label{thm:nice-automorphisms-exist} - There is a family of automorphisms \(\{\theta_\lambda : \Sigma^{-1} - \mathcal{U}(\mathfrak{g}) \to \Sigma^{-1} - \mathcal{U}(\mathfrak{g})\}_{\lambda \in \mathfrak{h}^*}\) such that - \begin{enumerate} - \item \(\theta_{k_1 \beta_1 + \cdots + k_n \beta_n}(r) = F_{\beta_1}^{k_1} - \cdots F_{\beta_n}^{k_n} r F_{\beta_1}^{- k_n} \cdots F_{\beta_n}^{- - k_1}\) for all \(r \in \Sigma^{-1} \mathcal{U}(\mathfrak{g})\) and \(k_1, - \ldots, k_n \in \mathbb{Z}\). - - \item For each \(r \in \Sigma^{-1} \mathcal{U}(\mathfrak{g})\) the map - \begin{align*} - \mathfrak{h}^* & \to \Sigma^{-1} \mathcal{U}(\mathfrak{g}) \\ - \lambda & \mapsto \theta_\lambda(r) - \end{align*} - is polynomial. - - \item If \(\lambda, \mu \in \mathfrak{h}^*\), \(M\) is a \(\Sigma^{-1} - \mathcal{U}(\mathfrak{g})\)-module whose restriction to - \(\mathcal{U}(\mathfrak{g})\) is a weight \(\mathfrak{g}\)-module and - \(\theta_\lambda M\) is the \(\Sigma^{-1} - \mathcal{U}(\mathfrak{g})\)-module \(M\) twisted by the automorphism - \(\theta_\lambda\) then \(M_\mu = (\theta_\lambda M)_{\mu + \lambda}\). - In particular, \(\operatorname{supp} \theta_\lambda M = \lambda + - \operatorname{supp} M\). - \end{enumerate} -\end{proposition} - -\begin{proof} - Since the elements \(F_\beta\), \(\beta \in \Sigma\) commute with one - another, the endomorphisms - \begin{align*} - \theta_{k_1 \beta_1 + \cdots + k_n \beta_n} - : \Sigma^{-1} \mathcal{U}(\mathfrak{g}) & - \to \Sigma^{-1} \mathcal{U}(\mathfrak{g}) \\ - r & \mapsto - F_{\beta_1}^{k_1} \cdots F_{\beta_n}^{k_n} - r - F_{\beta_1}^{- k_n} \cdots F_{\beta_n}^{- k_1} - \end{align*} - are well defined for all \(k_1, \ldots, k_n \in \mathbb{Z}\). - - Fix some \(r \in \Sigma^{-1} \mathcal{U}(\mathfrak{g})\). For any \(s \in - (F_\beta)_{\beta \in \Sigma}\) and \(k > 0\) we have \(s^k r = \binom{k}{0} - \operatorname{ad}(s)^0 r s^{k - 0} + \cdots + \binom{k}{k} - \operatorname{ad}(s)^k r s^{k - k}\). Now if we take \(m\) such - \(\operatorname{ad}(F_\beta)^{m + 1} r = 0\) for all \(\beta \in \Sigma\) we - find - \[ - \theta_{k_1 \beta_1 + \cdots + k_n \beta_n}(r) - = \sum_{i_1, \ldots, i_n = 1, \ldots, m} - \binom{k_1}{i_1} \cdots \binom{k_n}{i_n} - \operatorname{ad}(F_{\beta_1})^{i_1} \cdots - \operatorname{ad}(F_{\beta_n})^{i_n} - r - F_{\beta_1}^{- i_1} \cdots F_{\beta_n}^{- i_n} - \] - for all \(k_1, \ldots, k_n \in \NN\). - - Since the binomial coeffients \(\binom{x}{k} = \frac{x (x -1) \cdots (x - k + - 1)}{k!}\) can be uniquely extended to polynomial functions in \(x \in K\), we - may in general define - \[ - \theta_\lambda(r) - = \sum_{i_1, \ldots, i_n \ge 0} - \binom{\lambda_1}{i_1} \cdots \binom{\lambda_n}{i_n} - \operatorname{ad}(F_{\beta_1})^{i_1} \cdots - \operatorname{ad}(F_{\beta_n})^{i_n} - r - F_{\beta_1}^{- i_1} \cdots F_{\beta_n}^{- i_n} - \] - for \(\lambda_1, \ldots, \lambda_n \in K\), \(\lambda = \lambda_1 \beta_1 + - \cdots + \lambda_n \beta_n \in \mathfrak{h}^*\) - - It is clear that the \(\theta_\lambda\) are endmorphisms. To see that the - \(\theta_\lambda\) are indeed automorphisms, notice \(\theta_{- k_1 \beta_1 - - \cdots - k_n \beta_n} = \theta_{k_1 \beta_1 + \cdots + k_n \beta_n}^{-1}\). - The uniqueness of the polynomial extensions then implies \(\theta_{- \lambda} - = \theta_\lambda^{-1}\) in general: given \(r \in \Sigma^{-1} - \mathcal{U}(\mathfrak{g})\), the map - \begin{align*} - \mathfrak{h}^* & \to \Sigma^{-1} \mathcal{U}(\mathfrak{g}) \\ - \lambda & \mapsto \theta_\lambda(\theta_{-\lambda}(r)) - r - \end{align*} - is a polynomial extension of the zero map \(\ZZ \beta_1 \oplus \cdots \oplus - \ZZ \beta_n \to \Sigma^{-1} \mathcal{U}(\mathfrak{g})\) and is therefore - identicaly zero. - - Finally, let \(M\) be a \(\Sigma^{-1} \mathcal{U}(\mathfrak{g})\)-module - whose restriction is a weight module. If \(m \in M\) then - \[ - m \in (\theta_\lambda M)_{\mu + \lambda} - \iff \theta_\lambda(H) m = (\mu + \lambda)(H) \cdot m - \, \forall H \in \mathfrak{h} - \] - - But - \[ - \theta_\beta(H) - = F_\beta H F_\beta^{-1} - = ([F_\beta, H] + H F_\beta) F_\beta^{-1} - = (\beta(H) + H) F_\beta F_\beta^{-1} - = \beta(H) + H - \] - for all \(H \in \mathfrak{h}\) and \(\beta \in \Sigma\). In general, - \(\theta_\lambda(H) = \lambda(H) + H\) for all \(\lambda \in \mathfrak{h}^*\) - and hence - \[ - \begin{split} - m \in (\theta_\lambda M)_{\mu + \lambda} - & \iff (\lambda(H) + H) m = (\mu + \lambda)(H) \cdot m - \; \forall H \in \mathfrak{h} \\ - & \iff H m = \mu(H) \cdot m \; \forall H \in \mathfrak{h} \\ - & \iff m \in M_\mu - \end{split}, - \] - so that \((\theta_\lambda M)_{\mu + \lambda} = M_\mu\). -\end{proof} - -\begin{proposition}[Mathieu] - There exists a coherent extension \(\mathcal{M}\) of \(V\). -\end{proposition} - -\begin{proof} - Let \(\Lambda\) be a set of representatives of the \(Q\)-cosets in - \(\mathfrak{h}^*\) with \(0 \in \Lambda\) and take - \[ - \mathcal{M} - = \bigoplus_{\lambda \in \Lambda} \theta_\lambda \Sigma^{-1} V - \] - - On the one hand, \(V\) lies in \(\Sigma^{-1} V = \theta_0 \Sigma^{-1} V\) -- - notice that \(\theta_0\) is just the identity operator -- and therefore \(V - \subset \mathcal{M}\). On the other hand, \(\dim \mathcal{M}_\mu = \dim - \theta_\lambda \Sigma^{-1} V_\mu = \dim \Sigma^{-1} V_{\mu - \lambda} = d\) - for all \(\mu \in \lambda + Q\), \(\lambda \in \Lambda\). Furtheremore, given - \(u \in \mathcal{U}(\mathfrak{g})_0\) and \(\mu \in \lambda + - Q\), - \[ - \operatorname{Tr}(u\!\restriction_{\mathcal{M}_\mu}) - = \operatorname{Tr} - (\theta_\lambda(u)\!\restriction_{\Sigma^{-1} V_{\mu - \lambda}}) - \] - is polynomial in \(\mu\) because of the second item of - proposition~\ref{thm:nice-automorphisms-exist}. -\end{proof} - -\begin{theorem}[Mathieu] - There exists a unique completely reducible coherent extension - \(\operatorname{Ext}(V)\) of \(V\). More precisely, if \(\mathcal{M}\) is any - coherent extension of \(V\), then \(\mathcal{M}^{\operatorname{ss}} \cong - \operatorname{Ext}(V)\). Furthermore, \(\operatorname{Ext}(V)\) is - irreducible as a coherent family. -\end{theorem} - -\begin{proof} - The existence part should be clear from the previous discussion: it suffices - to fix some coherent extension \(\mathcal{M}\) of \(V\) and take - \(\operatorname{Ext}(V) = \mathcal{M}^{\operatorname{ss}}\). - - To see that \(\operatorname{Ext}(V)\) is irreducible as a coherent family, - recall from corollary~\ref{thm:admissible-is-submod-of-extension} that \(V\) - is a subrepresentation of \(\operatorname{Ext}(V)\). Since the degree of - \(V\) is the same as the degree of \(\operatorname{Ext}(V)\), some of its - weight spaces have maximal dimension inside of \(\operatorname{Ext}(V)\). In - particular, it follows from proposition~\ref{thm:centralizer-multiplicity} - that \(\operatorname{Ext}(V)_\lambda = V_\lambda\) is a simple - \(\mathcal{U}(\mathfrak{g})_0\)-module for some \(\lambda \in - \operatorname{supp} V\). - - As for the uniqueness of \(\operatorname{Ext}(V)\), fix some other completely - reducible coherent extension \(\mathcal{N}\) of \(V\). We claim that the - multiplicity of a given irreducible \(\mathfrak{g}\)-module \(W\) in - \(\mathcal{N}\) is determined by its \emph{trace function} - \begin{align*} - \mathfrak{h}^* \times \mathcal{U}(\mathfrak{g})_0 & - \to K \\ - (\lambda, u) & - \mapsto \operatorname{Tr}(u\!\restriction_{\mathcal{N}_\lambda}) - \end{align*} - - % TODO: Point out that this multiplicity is determined by the characters - % beforehand - Indeed, given \(\lambda \in \operatorname{supp} V\) the multiplicity of \(W\) - in \(\mathcal{N}\) is the same as the multiplicity of \(W_\lambda\) in - \(\mathcal{N}_\lambda\), which is determined by the character - \(\chi_{\mathcal{N}_\lambda} : \mathcal{U}(\mathfrak{g})_0 - \to K\) -- see proposition~\ref{thm:centralizer-multiplicity}. We now claim - that the trace function of \(\mathcal{N}\) is the same as that of - \(\operatorname{Ext}(V)\). Clearly, - \(\operatorname{Tr}(u\!\restriction_{\operatorname{Ext}(V)_\lambda}) - = \operatorname{Tr}(u\!\restriction_{V_\lambda}) - = \operatorname{Tr}(u\!\restriction_{\mathcal{N}_\lambda})\) for all - \(\lambda \in \operatorname{supp}_{\operatorname{ess}} V\), \(u \in - \mathcal{U}(\mathfrak{g})_0\). Since the essential support of - \(V\) is Zariski-dense and the maps \(\lambda \mapsto - \operatorname{Tr}(u\!\restriction_{\operatorname{Ext}(V)_\lambda})\) and - \(\lambda \mapsto \operatorname{Tr}(u\!\restriction_{\mathcal{N}_\lambda})\) - are polynomial in \(\lambda \in \mathfrak{h}^*\), it follows that this maps - coincide for all \(u\). - - In conclusion, \(\mathcal{N} \cong \operatorname{Ext}(V)\) and - \(\operatorname{Ext}(V)\) is unique. -\end{proof} - -\begin{proposition}[Mathieu] - The central characters of the irreducible submodules of - \(\operatorname{Ext}(V)\) are all the same. -\end{proposition}