lie-algebras-and-their-representations

Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules

complete-reducibility.tex (47064B)

   1 \chapter{Semisimplicity \& Complete Reducibility}
   2 
   3 \label{start-47}
   4 
   5 Having hopefully established in the previous chapter that Lie algebras and
   6 their representations are indeed useful, we are now faced with the Herculean
   7 task of trying to understand them. We have seen that representations can be
   8 used to derive geometric information about groups, but the question remains:
   9 how do we go about classifying the representations of a given Lie algebra? This
  10 question has sparked an entire field of research, and we cannot hope to provide
  11 a comprehensive answer in the \pagedifference{start-47}{end-47} pages we have
  12 left. Nevertheless, we can work on particular cases.
  13 
  14 For instance, one can readily check that a \(K^n\)-module \(M\) -- here \(K^n\)
  15 denotes the \(n\)-dimensional Abelian Lie algebra -- is nothing more than a
  16 choice of \(n\) commuting operators \(M \to M\) -- corresponding to the action
  17 of the canonical basis elements \(e_1, \ldots, e_n \in K^n\). In particular, a
  18 \(1\)-dimensional \(K^n\)-module is just a choice of \(n\) scalars \(\lambda_1,
  19 \ldots, \lambda_n\). Different choices of scalars yield non-isomorphic modules,
  20 so that the \(1\)-dimensional \(K^n\)-modules are parameterized by points in
  21 \(K^n\).
  22 
  23 This goes to show that classifying the representations of Abelian algebras is
  24 not that interesting of a problem. Instead, we focus on a less trivial, yet
  25 reasonably well behaved case: the finite-dimensional modules of a
  26 finite-dimensional semisimple Lie algebra \(\mathfrak{g}\) over an
  27 algebraically closed field \(K\) of characteristic \(0\). But why are the
  28 modules of a semisimple Lie algebras simpler -- or perhaps \emph{semisimpler}
  29 -- to understand than those of any old Lie algebra? We will get back to this
  30 question in a moment, but for now we simply note that, when solving a
  31 classification problem, it is often profitable to break down our structure is
  32 smaller pieces. This leads us to the following definitions.
  33 
  34 \begin{definition}\index{\(\mathfrak{g}\)-module!indecomposable module}
  35   A \(\mathfrak{g}\)-module is called \emph{indecomposable} if it is
  36   not isomorphic to the direct sum of two nonzero \(\mathfrak{g}\)-modules.
  37 \end{definition}
  38 
  39 \begin{definition}\index{\(\mathfrak{g}\)-module!simple module}\index{simple!\(\mathfrak{g}\)-module}
  40   A \(\mathfrak{g}\)-module is called \emph{simple} if it has no nonzero proper
  41   \(\mathfrak{g}\)-modules.
  42 \end{definition}
  43 
  44 \begin{example}
  45   The trivial \(\mathfrak{g}\)-module \(K\) is an example of a simple
  46   \(\mathfrak{g}\)-module. In fact, every \(1\)-dimensional
  47   \(\mathfrak{g}\)-module \(M\) is simple: \(M\) has no nonzero proper
  48   \(K\)-subspaces, let alone \(\mathfrak{g}\)-submodules.
  49 \end{example}
  50 
  51 \begin{example}\label{ex:all-simple-reps-are-tensor-prod}
  52   Given a finite-dimensional simple \(\mathfrak{g}_1\)-module \(M_1\) and a
  53   finite-dimensional simple \(\mathfrak{g}_2\)-module \(M_2\), the tensor
  54   product \(M_1 \otimes M_2\) is a simple \(\mathfrak{g}_1 \oplus
  55   \mathfrak{g}_2\)-module. All finite-dimensional simple \(\mathfrak{g}_1
  56   \oplus \mathfrak{g}_2\)-modules have the form \(M_1 \otimes M_2\) for unique
  57   (up to isomorphism) \(M_1\) and \(M_2\). In light of
  58   Example~\ref{ex:univ-enveloping-of-sum-is-tensor}, this is a particular case
  59   of the fact that, given \(K\)-algebras \(A\) and \(B\), all
  60   finite-dimensional simple \(A \otimes_K B\)-modules are given tensor products
  61   of simple \(A\)-modules with simple \(B\)-modules -- see
  62   \cite[ch.~3]{etingof}.
  63 \end{example}
  64 
  65 The general strategy for classifying finite-dimensional modules over an algebra
  66 is to classify the indecomposable modules. This is because\dots
  67 
  68 \begin{theorem}[Krull-Schmidt]\label{thm:krull-schmidt}
  69   Let \(\mathfrak{g}\) be a Lie algebra.
  70   Then every finite-dimensional \(\mathfrak{g}\)-module can be uniquely --
  71   up to isomorphisms and reordering of the summands -- decomposed into a direct
  72   sum of indecomposable \(\mathfrak{g}\)-modules.
  73 \end{theorem}
  74 
  75 Hence finding the indecomposable \(\mathfrak{g}\)-modules suffices to find
  76 \emph{all} finite-dimensional \(\mathfrak{g}\)-modules: they are the direct sum
  77 of indecomposable \(\mathfrak{g}\)-modules. The existence of the decomposition
  78 should be clear from the definitions. Indeed, if \(M\) is a finite-dimensional
  79 \(\mathfrak{g}\)-modules a simple argument via induction in \(\dim M\) suffices
  80 to prove the existence: if \(M\) is indecomposable then there is nothing to
  81 prove, and if \(M\) is not indecomposable then \(M = N \oplus L\) for some
  82 nonzero submodules \(N, L \subsetneq M\), so that their dimensions are both
  83 strictly smaller than \(\dim M\) and the existence follows from the induction
  84 hypothesis. For a proof of uniqueness please refer to \cite{etingof}.
  85 
  86 Finding the indecomposable modules of an arbitrary Lie algebra, however, turns
  87 out to be a bit of a circular problem: the indecomposable
  88 \(\mathfrak{g}\)-modules are the ones that cannot be decomposed, which is to
  89 say, those that are \emph{not} decomposable. Ideally, we would like to find
  90 some other condition, equivalent to indecomposability, but which is easier to
  91 work with. It is clear from the definitions that every simple
  92 \(\mathfrak{g}\)-module is indecomposable, but there is no reason to believe
  93 the converse is true. Indeed, this is not always the case. For instance\dots
  94 
  95 \begin{example}\label{ex:indecomposable-not-irr}
  96   The space \(M = K^2\) endowed with the action
  97   \begin{align*}
  98     x \cdot e_1 & = e_1 & x \cdot e_2 = e_1 + e_2
  99   \end{align*}
 100   of the Lie algebra \(K[x]\) is a \(K[x]\)-module. Notice \(M\) has a single
 101   nonzero proper submodule, which is spanned by the vector \(e_1\). This is
 102   because if \((a + b) e_1 + b e_2 = x \cdot (a e_1 + b e_2) = \lambda \cdot (a
 103   e_1 + b e_2)\) for some \(\lambda \in K\) then \(\lambda = 1\) and \(b = 0\).
 104   Hence \(M\) is indecomposable -- it cannot be broken into a direct sum of
 105   \(1\)-dimensional submodules -- but it is evidently not simple.
 106 \end{example}
 107 
 108 This counterexample poses an interesting question: are there conditions one can
 109 impose on an algebra \(\mathfrak{g}\) under which every indecomposable
 110 \(\mathfrak{g}\)-module is simple? This is what is known in representation
 111 theory as \emph{complete reducibility}.
 112 
 113 \begin{definition}\index{\(\mathfrak{g}\)-module!completely reducible module}
 114   A \(\mathfrak{g}\)-module \(M\) is called \emph{completely reducible} if
 115   every \(\mathfrak{g}\)-submodule of \(M\) has a \(\mathfrak{g}\)-invariant
 116   complement -- i.e. given \(N \subset M\), there is a submodule \(L \subset
 117   M\) such that \(M = N \oplus L\).
 118 \end{definition}
 119 
 120 \begin{definition}\index{\(\mathfrak{g}\)-module!semisimple module}\index{semisimple!\(\mathfrak{g}\)-module}
 121   A \(\mathfrak{g}\)-module \(M\) is called \emph{semisimple} if it is the
 122   direct sum of simple \(\mathfrak{g}\)-modules.
 123 \end{definition}
 124 
 125 In case the relationship between complete reducibility, semisimplicity of
 126 \(\mathfrak{g}\)-modules and the simplicity of indecomposable modules is
 127 unclear, the following results should clear things up.
 128 
 129 \begin{proposition}
 130   The following conditions are equivalent.
 131   \begin{enumerate}
 132     \item Every submodule of a finite-dimensional \(\mathfrak{g}\)-module is
 133       completely reducible.
 134 
 135     \item Every exact sequence of finite-dimensional \(\mathfrak{g}\)-modules
 136       splits.
 137 
 138     \item Every indecomposable finite-dimensional \(\mathfrak{g}\)-module is
 139       simple.
 140 
 141     \item Every finite-dimensional \(\mathfrak{g}\)-module is semisimple.
 142   \end{enumerate}
 143 \end{proposition}
 144 
 145 \begin{proof}
 146   We begin by \(\textbf{(i)} \implies \textbf{(ii)}\). Let
 147   \begin{center}
 148     \begin{tikzcd}
 149       0 \rar    &
 150       N \rar{f} &
 151       M \rar{g} &
 152       L \rar    &
 153       0
 154     \end{tikzcd}
 155   \end{center}
 156   be an exact sequence of \(\mathfrak{g}\)-modules. We can suppose without loss
 157   of generality that \(N \subset M\) is a submodule and \(f\) is its inclusion
 158   in \(M\), for if this is not the case there is an isomorphism of sequences
 159   \begin{center}
 160     \begin{tikzcd}
 161          0 \rar                                    &
 162          N \rar{f}       \dar[swap]{f}             &
 163          M \rar{g}       \dar[Rightarrow, no head] &
 164          L \rar          \dar[Rightarrow, no head] &
 165          0                                         \\
 166          0 \rar                                    &
 167       f(N) \rar                                    &
 168          M \rar[swap]{g}                           &
 169          L \rar                                    &
 170          0
 171     \end{tikzcd}
 172   \end{center}
 173 
 174   It then follows from \textbf{(i)} that there exists a
 175   \(\mathfrak{g}\)-submodule \(L' \subset M\) such that \(M = N \oplus L'\).
 176   Finally, the projection \(s : M \to N\) is \(\mathfrak{g}\)-homomorphism
 177   satisfying
 178   \begin{center}
 179     \begin{tikzcd}
 180       0 \rar                          &
 181       N \rar{f}                       &
 182       M \rar{g} \lar[bend left=30]{s} &
 183       L \rar                          &
 184       0
 185     \end{tikzcd}
 186   \end{center}
 187 
 188   Next is \(\textbf{(ii)} \implies \textbf{(iii)}\). If \(M\) is an
 189   indecomposable \(\mathfrak{g}\)-module and \(N \subset M\) is a submodule, we
 190   have an exact sequence
 191   \begin{center}
 192     \begin{tikzcd}
 193                  0 \rar &
 194                  N \rar &
 195                  M \rar &
 196       \mfrac{M}{N} \rar &
 197                  0
 198     \end{tikzcd}
 199   \end{center}
 200   of \(\mathfrak{g}\)-modules.
 201 
 202   Since our sequence splits, we must have \(M \cong N \oplus \mfrac{M}{N}\).
 203   But \(M\) is indecomposable, so that either \(M = N\) or \(M \cong
 204   \mfrac{M}{N}\), in which case \(N = 0\). Since this holds for all \(N \subset
 205   M\), \(M\) is simple. For \(\textbf{(iii)} \implies \textbf{(iv)}\) it
 206   suffices to apply Theorem~\ref{thm:krull-schmidt}.
 207 
 208   Finally, for \(\textbf{(iv)} \implies \textbf{(i)}\), if we assume
 209   \(\textbf{(iv)}\) and let \(M\) be a \(\mathfrak{g}\)-module with
 210   decomposition into simple submodules
 211   \[
 212     M = \bigoplus_i M_i
 213   \]
 214   and \(N \subset M\) is a submodule. Take some maximal set of indexes \(\{i_1,
 215   \ldots, i_r\}\) so that \(\left( \bigoplus_k M_{i_k} \right) \cap M = 0\) and
 216   let \(L = \bigoplus_k M_{i_k}\). We want to establish \(M = N \oplus L\).
 217 
 218   Suppose without any loss in generality that \(i_k = k\) for all \(k\) and let
 219   \(j > r\). By the maximality of our set of indexes, there is some nonzero \(n
 220   \in (M_j \oplus L) \cap N\). Say \(n = m_j + m_1 + \cdots + m_r\) with each
 221   \(m_i \in M_i\). Then \(m_j = n - m_1 - \cdots - m_r \in M_j \cap (N \oplus
 222   L)\) is nonzero. Indeed, if this is not the case we find \(0 \ne n = m_1 +
 223   \cdots + m_r \in \left( \bigoplus_{i = 1}^r M_i \right) \cap N\), a
 224   contradiction. This implies \(M_j \cap (N \oplus L)\) is a nonzero submodule
 225   of \(M_j\). Since \(M_j\) is simple, \(M_j = M_j \cap (N \oplus L)\) and
 226   therefore \(M_j \subset N \oplus L\). Given the arbitrary choice of \(j\), it
 227   then follows \(M = N \oplus L\).
 228 \end{proof}
 229 
 230 While we are primarily interested in indecomposable \(\mathfrak{g}\)-modules --
 231 which is usually a strictly larger class of representations than that of simple
 232 \(\mathfrak{g}\)-modules -- it is important to note that simple
 233 \(\mathfrak{g}\)-modules are generally much easier to find. The relationship
 234 between simple \(\mathfrak{g}\)-modules is also well understood. This is
 235 because of the following result, known as \emph{Schur's Lemma}.
 236 
 237 \begin{lemma}[Schur]
 238   Let \(M\) and \(N\) be simple \(\mathfrak{g}\)-modules and \(f : M \to N\) be
 239   a \(\mathfrak{g}\)-homomorphism. Then \(f\) is either \(0\) or an
 240   isomorphism. Furthermore, if \(M = N\) is finite-dimensional then \(f\) is a
 241   scalar operator.
 242 \end{lemma}
 243 
 244 \begin{proof}
 245   For the first statement, it suffices to notice that \(\ker f\) and
 246   \(\operatorname{im} f\) are both submodules. In particular, either \(\ker f =
 247   0\) and \(\operatorname{im} f = N\) or \(\ker f = M\) and \(\operatorname{im}
 248   f = 0\). Now suppose \(M = N\) is finite-dimensional. Let \(\lambda \in K\)
 249   be an eigenvalue of \(f\) -- which exists because \(K\) is algebraically
 250   closed -- and \(M_\lambda\) be its corresponding eigenspace. Given \(m \in
 251   M_\lambda\), \(f(X \cdot m) = X \cdot f(m) = \lambda X \cdot m\). In other
 252   words, \(M_\lambda\) is a \(\mathfrak{g}\)-submodule. It then follows
 253   \(M_\lambda = M\), given that \(M_\lambda \ne 0\).
 254 \end{proof}
 255 
 256 We are now ready to answer our first question: the special thing about
 257 semisimple algebras is that the relationship between their indecomposable
 258 modules and their simple modules is much clearer. Namely\dots
 259 
 260 \begin{proposition}
 261   Given a finite-dimensional Lie algebra \(\mathfrak{g}\) over \(K\),
 262   \(\mathfrak{g}\) is semisimple if, and only if every finite-dimensional
 263   \(\mathfrak{g}\)-module is completely reducible.
 264 \end{proposition}
 265 
 266 The proof of the fact that a finite-dimensional Lie algebra \(\mathfrak{g}\)
 267 whose finite-dimensional modules are completely reducible is semisimple is
 268 actually pretty simple. Namely, it suffices to note that the adjoint
 269 \(\mathfrak{g}\)-module is the direct sum of simple submodules, which are all
 270 simple ideals of \(\mathfrak{g}\) -- so \(\mathfrak{g}\) is the direct sum of
 271 simple Lie algebras. The proof of the converse is more nuanced, and this will
 272 be our next milestone.
 273 
 274 Before proceeding to the proof of complete reducibility, however, we would like
 275 to introduce some basic tools which will come in handy later on, known as\dots
 276 
 277 \section{Invariant Bilinear Forms}
 278 
 279 \begin{definition}\index{invariant bilinear form}
 280   A symmetric bilinear form \(B : \mathfrak{g} \times \mathfrak{g} \to K\) is
 281   called \emph{\(\mathfrak{g}\)-invariant} if the operator
 282   \(\operatorname{ad}(X) : \mathfrak{g} \to \mathfrak{g}\) is antisymmetric
 283   with respect to \(B\) for all \(X \in \mathfrak{g}\).
 284   \[
 285     B(\operatorname{ad}(X) Y, Z) + B(Y, \operatorname{ad}(X) Z) = 0
 286   \]
 287 \end{definition}
 288 
 289 \begin{note}
 290   The etymology of the term \emph{invariant form} comes from group
 291   representation theory. Namely, given a linear action of a group \(G\) on a
 292   vector space \(V\) equipped with a bilinear form \(B\), \(B\) is called
 293   \(G\)-invariant if all \(g \in G\) act via \(B\)-orthogonal operators. The
 294   condition of \(\mathfrak{g}\)-invariance can thus be though-of as an
 295   \emph{infinitesimal approximation} of the notion of a \(G\)-invariant form.
 296   Indeed \(\operatorname{Lie}(\operatorname{O}(B))\) is precisely the Lie
 297   subalgebra of \(\mathfrak{gl}(V)\) consisting of antisymmetric operators \(V
 298   \to V\).
 299 \end{note}
 300 
 301 An interesting example of an invariant bilinear form is the so called
 302 \emph{Killing form}.
 303 
 304 \begin{definition}\index{invariant bilinear form!Killing form}\index{Killing form}
 305   Given a finite-dimensional Lie algebra \(\mathfrak{g}\), the symmetric
 306   bilinear form
 307   \begin{align*}
 308     \kappa : \mathfrak{g} \times \mathfrak{g} & \to K \\
 309     (X, Y) &
 310     \mapsto \operatorname{Tr}(\operatorname{ad}(X) \operatorname{ad}(Y))
 311   \end{align*}
 312   is called \emph{the Killing form of \(\mathfrak{g}\)}.
 313 \end{definition}
 314 
 315 The fact that the Killing form is an invariant form follows directly from the
 316 identity \(\operatorname{Tr}([X, Y] Z) = \operatorname{Tr}(X [Y, Z])\), \(X, Y,
 317 Z \in \mathfrak{gl}_n(K)\). In fact this same identity show\dots
 318 
 319 \begin{lemma}\index{invariant bilinear form!bilinear form of a \(\mathfrak{g}\)-module}
 320   Given a finite-dimensional \(\mathfrak{g}\)-module \(M\), the symmetric
 321   bilinear form
 322   \begin{align*}
 323     \kappa_M : \mathfrak{g} \times \mathfrak{g} & \to K \\
 324     (X, Y) & \mapsto \operatorname{Tr}(X\!\restriction_M \, Y\!\restriction_M)
 325   \end{align*}
 326   is \(\mathfrak{g}\)-invariant.
 327 \end{lemma}
 328 
 329 The reason why we are discussing invariant bilinear forms is the following
 330 characterization of finite-dimensional semisimple Lie algebras, known as
 331 \emph{Cartan's criterion for semisimplicity}.
 332 
 333 \begin{proposition}
 334   Let \(\mathfrak{g}\) be a Lie algebra. The following conditions are
 335   equivalent.
 336   \begin{enumerate}
 337     \item \(\mathfrak{g}\) is semisimple.
 338     \item For each non-trivial finite-dimensional \(\mathfrak{g}\)-module
 339       \(M\), the \(\mathfrak{g}\)-invariant bilinear form
 340       \begin{align*}
 341         \kappa_M : \mathfrak{g} \times \mathfrak{g}                          &
 342         \to K                                                                \\
 343         (X, Y)                                                               &
 344         \mapsto \operatorname{Tr}(X\!\restriction_M \, Y\!\restriction_M)
 345       \end{align*}
 346       is non-degenerate\footnote{A symmetric bilinear form $B : \mathfrak{g}
 347       \times \mathfrak{g} \to K$ is called non-degenerate if $B(X, Y) = 0$ for
 348       all $Y \in \mathfrak{g}$ implies $X = 0$.}.
 349     \item The Killing form \(\kappa\) is non-degenerate.
 350   \end{enumerate}
 351 \end{proposition}
 352 
 353 This proof is somewhat technical, but the idea behind it is simple. First, for
 354 \strong{(i)} \(\implies\) \strong{(ii)} we show that \(\mathfrak{a} = \{ X \in
 355 \mathfrak{g} : \kappa_M(X, Y) = 0 \, \forall Y \in \mathfrak{g}\}\) is a
 356 solvable ideal of \(\mathfrak{g}\). Hence \(\mathfrak{a} = 0\). For
 357 \strong{(ii)} \(\implies\) \strong{(iii)} it suffices to take \(M =
 358 \mathfrak{g}\) the adjoint \(\mathfrak{g}\)-module. Finally, for \strong{(iii)}
 359 \(\implies\) \strong{(i)} we note that the orthogonal complement of any
 360 \(\mathfrak{a} \normal \mathfrak{g}\) with respect to the Killing form
 361 \(\kappa\) is an ideal \(\mathfrak{b}\) of \(\mathfrak{g}\) with \(\mathfrak{g}
 362 = \mathfrak{a} \oplus \mathfrak{b}\). Furthermore, the Killing form of
 363 \(\mathfrak{a}\) is the restriction \(\kappa\!\restriction_{\mathfrak{a}}\) of
 364 the Killing form of \(\mathfrak{g}\) to \(\mathfrak{a} \times \mathfrak{a}\),
 365 which is non-degenerate. It then follows from induction in \(\dim
 366 \mathfrak{a}\) that \(\mathfrak{g}\) is the sum of simple ideals.
 367 
 368 We refer the reader to \cite[ch. 5]{humphreys} for a complete proof. Without
 369 further ado, we may proceed to our\dots
 370 
 371 \section{Proof of Complete Reducibility}
 372 
 373 Let \(\mathfrak{g}\) be a finite-dimensional Lie algebra over \(K\). We want to
 374 establish that if \(\mathfrak{g}\) is semisimple then all finite-dimensional
 375 \(\mathfrak{g}\)-modules are semisimple. Historically, this was first proved by
 376 Herman Weyl for \(K = \mathbb{C}\), using his knowledge of smooth
 377 representations of compact Lie groups. Namely, Weyl showed that any
 378 finite-dimensional semisimple complex Lie algebra is (isomorphic to) the
 379 complexification of the Lie algebra of a unique simply connected compact Lie
 380 group, known as its \emph{compact form}. Hence the category of the
 381 finite-dimensional modules of a given complex semisimple algebra is equivalent
 382 to that of the finite-dimensional smooth representations of its compact form,
 383 whose representations are known to be completely reducible because of Maschke's
 384 Theorem -- see \cite[ch. 3]{serganova} for instance.
 385 
 386 This proof, however, is heavily reliant on the geometric structure of
 387 \(\mathbb{C}\). In other words, there is no hope for generalizing this for some
 388 arbitrary \(K\). Fortunately for us, there is a much simpler, completely
 389 algebraic proof of complete reducibility, which works for algebras over any
 390 algebraically closed field of characteristic zero. The algebraic proof included
 391 in here is mainly based on that of \cite[ch. 6]{kirillov}, and uses some basic
 392 homological algebra. Admittedly, much of the homological algebra used in here
 393 could be concealed from the reader, which would make the exposition more
 394 accessible -- see \cite{humphreys} for instance.
 395 
 396 However, this does not change the fact the arguments used in this proof are
 397 essentially homological in nature. Hence we consider it more productive to use
 398 the full force of the language of homological algebra, instead of burring the
 399 reader in a pile of unmotivated, yet entirely elementary arguments.
 400 Furthermore, the homological algebra used in here is actually \emph{very
 401 basic}. In fact, all we need to know is\dots
 402 
 403 \begin{theorem}\label{thm:ext-exacts-seqs}\index{\(\operatorname{Ext}\) functors}
 404   There is a sequence of bifunctors \(\operatorname{Ext}^i :
 405   \mathfrak{g}\text{-}\mathbf{Mod}^{\operatorname{op}} \times
 406   \mathfrak{g}\text{-}\mathbf{Mod} \to K\text{-}\mathbf{Vect}\), \(i \ge 0\)
 407   such that, given a \(\mathfrak{g}\)-module \(L'\), every exact sequence of
 408   \(\mathfrak{g}\)-modules
 409   \begin{center}
 410     \begin{tikzcd}
 411       0 \rar & N \rar{f} & M \rar{g} & L \rar & 0
 412     \end{tikzcd}
 413   \end{center}
 414   induces long exact sequences
 415   \begin{center}
 416     \begin{tikzcd}
 417       0 \rar                                                    &
 418       \operatorname{Hom}_{\mathfrak{g}}(L', N)
 419       \rar{f \circ -}\ar[draw=none]{d}[name=X, anchor=center]{} &
 420       \operatorname{Hom}_{\mathfrak{g}}(L', M) \rar{g \circ -}  &
 421       \operatorname{Hom}_{\mathfrak{g}}(L', L)
 422       \ar[rounded corners,
 423           to path={ -- ([xshift=2ex]\tikztostart.east)
 424                     |- (X.center) \tikztonodes
 425                     -| ([xshift=-2ex]\tikztotarget.west)
 426                     -- (\tikztotarget)}]{dll}[at end]{} \\      &
 427       \operatorname{Ext}^1(L', N)
 428       \rar\ar[draw=none]{d}[name=Y, anchor=center]{}            &
 429       \operatorname{Ext}^1(L', M) \rar                          &
 430       \operatorname{Ext}^1(L', L)
 431       \ar[rounded corners,
 432           to path={ -- ([xshift=2ex]\tikztostart.east)
 433                     |- (Y.center) \tikztonodes
 434                     -| ([xshift=-2ex]\tikztotarget.west)
 435                     -- (\tikztotarget)}]{dll}[at end]{} \\      &
 436       \operatorname{Ext}^2(L', N) \rar                          &
 437       \operatorname{Ext}^2(L', M) \rar                          &
 438       \operatorname{Ext}^2(L', L) \rar[dashed]                  &
 439       \cdots
 440     \end{tikzcd}
 441   \end{center}
 442   and
 443   \begin{center}
 444     \begin{tikzcd}
 445       0 \rar                                                    &
 446       \operatorname{Hom}_{\mathfrak{g}}(L, L')
 447       \rar{- \circ g}\ar[draw=none]{d}[name=X, anchor=center]{} &
 448       \operatorname{Hom}_{\mathfrak{g}}(M, L') \rar{- \circ f}  &
 449       \operatorname{Hom}_{\mathfrak{g}}(N, L')
 450       \ar[rounded corners,
 451           to path={ -- ([xshift=2ex]\tikztostart.east)
 452                     |- (X.center) \tikztonodes
 453                     -| ([xshift=-2ex]\tikztotarget.west)
 454                     -- (\tikztotarget)}]{dll}[at end]{} \\      &
 455       \operatorname{Ext}^1(L, L')
 456       \rar\ar[draw=none]{d}[name=Y, anchor=center]{}            &
 457       \operatorname{Ext}^1(M, L') \rar                          &
 458       \operatorname{Ext}^1(N, L')
 459       \ar[rounded corners,
 460           to path={ -- ([xshift=2ex]\tikztostart.east)
 461                     |- (Y.center) \tikztonodes
 462                     -| ([xshift=-2ex]\tikztotarget.west)
 463                     -- (\tikztotarget)}]{dll}[at end]{} \\      &
 464       \operatorname{Ext}^2(L, L') \rar                          &
 465       \operatorname{Ext}^2(M, L') \rar                          &
 466       \operatorname{Ext}^2(N, L') \rar[dashed]                  &
 467       \cdots
 468     \end{tikzcd}
 469   \end{center}
 470 \end{theorem}
 471 
 472 \begin{theorem}\label{thm:ext-1-classify-short-seqs}
 473   Given \(\mathfrak{g}\)-modules \(N\) and \(L\), there is a one-to-one
 474   correspondence between elements of \(\operatorname{Ext}^1(L, N)\) and
 475   isomorphism classes of short exact sequences
 476   \begin{center}
 477     \begin{tikzcd}
 478       0 \rar & N \rar & M \rar & L \rar & 0
 479     \end{tikzcd}
 480   \end{center}
 481 
 482   In particular, \(\operatorname{Ext}^1(L, N) = 0\) if, and only if every short
 483   exact sequence of \(\mathfrak{g}\)-modules with \(N\) and \(L\) in the
 484   extremes splits.
 485 \end{theorem}
 486 
 487 We should point out that, although we have not provided an explicit definition
 488 of the bifunctors \(\operatorname{Ext}^i\), they are uniquely determined by
 489 the conditions of Theorem~\ref{thm:ext-exacts-seqs} and some additional
 490 minimality constraints. This is, of course, \emph{far} from a comprehensive
 491 account of homological algebra. Nevertheless, this is all we need. We refer the
 492 reader to \cite{harder} for a complete exposition, or to part II of
 493 \cite{ribeiro} for a more modern account using derived categories.
 494 
 495 We are particularly interested in the case where \(L' = K\) is the trivial
 496 \(\mathfrak{g}\)-module. Namely, we may define\dots
 497 
 498 \begin{definition}\index{Lie algebra!cohomology}\index{cohomology of Lie algebras}
 499   Given a Lie algebra \(\mathfrak{g}\) and a \(\mathfrak{g}\)-module \(M\), we
 500   refer to the Abelian group \(H^i(\mathfrak{g}, M) = \operatorname{Ext}^i(K,
 501   M)\) as \emph{the \(i\)-th Lie algebra cohomology group of \(\mathfrak{g}\)
 502   with coefficients in \(M\)}.
 503 \end{definition}
 504 
 505 \begin{definition}\index{cohomology of Lie algebras!invariants}
 506   Given a \(\mathfrak{g}\)-module \(M\), we call the vector space
 507   \(M^{\mathfrak{g}} = \{m \in M : X \cdot m = 0 \; \forall X \in
 508   \mathfrak{g}\}\) \emph{the space of invariants of \(M\)}. A simple
 509   calculations shows that a \(\mathfrak{g}\)-homomorphism \(f : M \to N\) takes
 510   invariants to invariants, so that \(f\) restricts to a map \(M^{\mathfrak{g}}
 511   \to N^{\mathfrak{g}}\). This construction thus yields a functor
 512   \(-^{\mathfrak{g}} : \mathfrak{g}\text{-}\mathbf{Mod} \to
 513   K\text{-}\mathbf{Vect}\).
 514 \end{definition}
 515 
 516 \begin{example}
 517   Let \(M\) be a \(\mathfrak{g}\)-module. Then \(M\) is a direct sum of copies
 518   of the trivial \(\mathfrak{g}\)-module if, and only if \(M =
 519   M^{\mathfrak{g}}\).
 520 \end{example}
 521 
 522 \begin{example}\label{ex:hom-invariants-are-g-homs}
 523   Let \(M\) and \(N\) be \(\mathfrak{g}\)-modules. Then \(\operatorname{Hom}(M,
 524   N)^{\mathfrak{g}} = \operatorname{Hom}_{\mathfrak{g}}(M, N)\). Indeed, given
 525   a \(K\)-linear map \(f : M \to N\) we find
 526   \[
 527     \begin{split}
 528       f \in \operatorname{Hom}(M, N)^{\mathfrak{g}}
 529       & \iff X \cdot f(m) - f(X \cdot m) = (X \cdot f)(m) = 0
 530       \; \forall X \in \mathfrak{g}, m \in M \\
 531       & \iff X \cdot f(m) = f(X \cdot m)
 532       \; \forall X \in \mathfrak{g}, m \in M \\
 533       & \iff f \in \operatorname{Hom}_{\mathfrak{g}}(M, N)
 534     \end{split}
 535   \]
 536 \end{example}
 537 
 538 The Lie algebra cohomology groups are very much related to invariants of
 539 \(\mathfrak{g}\)-modules. Namely, constructing a \(\mathfrak{g}\)-homomorphism
 540 \(f : K \to M\) is precisely the same as fixing an invariant of \(M\) --
 541 corresponding to \(f(1)\), which must be an invariant for \(f\) to be a
 542 \(\mathfrak{g}\)-homomorphism. Formally, this translates to the existence of a
 543 canonical isomorphism of functors
 544 \(\operatorname{Hom}_{\mathfrak{g}}(K, -) \isoto {-}^{\mathfrak{g}}\) given by
 545 \begin{align*}
 546   \operatorname{Hom}_{\mathfrak{g}}(K, M) & \isoto  M^{\mathfrak{g}} \\
 547                                         f & \mapsto f(1)
 548 \end{align*}
 549 
 550 This implies\dots
 551 
 552 \begin{corollary}
 553   Every short exact sequence of \(\mathfrak{g}\)-modules
 554   \begin{center}
 555     \begin{tikzcd}
 556       0 \rar & N \rar{f} & M \rar{g} & L \rar & 0
 557     \end{tikzcd}
 558   \end{center}
 559   induces a long exact sequence
 560   \begin{center}
 561     \begin{tikzcd}
 562       0 \rar                                                              &
 563       N^{\mathfrak{g}} \rar{f}
 564       \ar[draw=none]{d}[name=X, anchor=center]{}                          &
 565       M^{\mathfrak{g}} \rar{g}                                            &
 566       L^{\mathfrak{g}}
 567       \ar[rounded corners,
 568           to path={ -- ([xshift=2ex]\tikztostart.east)
 569                     |- (X.center) \tikztonodes
 570                     -| ([xshift=-2ex]\tikztotarget.west)
 571                     -- (\tikztotarget)}]{dll}[at end]{} \\                &
 572       H^1(\mathfrak{g}, N) \rar\ar[draw=none]{d}[name=Y, anchor=center]{} &
 573       H^1(\mathfrak{g}, M) \rar                                           &
 574       H^1(\mathfrak{g}, L)
 575       \ar[rounded corners,
 576           to path={ -- ([xshift=2ex]\tikztostart.east)
 577                     |- (Y.center) \tikztonodes
 578                     -| ([xshift=-2ex]\tikztotarget.west)
 579                     -- (\tikztotarget)}]{dll}[at end]{} \\                &
 580       H^2(\mathfrak{g}, N) \rar                                           &
 581       H^2(\mathfrak{g}, M) \rar                                           &
 582       H^2(\mathfrak{g}, L) \rar[dashed]                                   &
 583       \cdots
 584     \end{tikzcd}
 585   \end{center}
 586 \end{corollary}
 587 
 588 \begin{proof}
 589   We have an isomorphism of sequences
 590   \begin{center}
 591     \begin{tikzcd}
 592       0 \rar &
 593       \operatorname{Hom}_{\mathfrak{g}}(K, N) \rar{f \circ -} \dar &
 594       \operatorname{Hom}_{\mathfrak{g}}(K, M) \rar{g \circ -} \dar &
 595       \operatorname{Hom}_{\mathfrak{g}}(K, L) \rar \dar            &
 596       H^1(\mathfrak{g}, N) \rar[dashed]\dar[Rightarrow, no head]   & \cdots \\
 597       0 \rar                                                       &
 598       N^{\mathfrak{g}} \rar[swap]{f}                               &
 599       M^{\mathfrak{g}} \rar[swap]{g}                               &
 600       L^{\mathfrak{g}} \rar                                        &
 601       H^1(\mathfrak{g}, N) \rar[dashed]                            &
 602       \cdots
 603     \end{tikzcd}
 604   \end{center}
 605 
 606   By Theorem~\ref{thm:ext-exacts-seqs} the sequence on the top is exact. Hence
 607   so is the sequence on the bottom.
 608 \end{proof}
 609 
 610 This is all well and good, but what does any of this have to do with complete
 611 reducibility? Well, in general cohomology theories really shine when one is
 612 trying to control obstructions of some kind. In our case, the bifunctor
 613 \(H^1(\mathfrak{g}, \operatorname{Hom}(-, -)) :
 614 \mathfrak{g}\text{-}\mathbf{Mod}^{\operatorname{op}} \times
 615 \mathfrak{g}\text{-}\mathbf{Mod} \to K\text{-}\mathbf{Vect}\) classifies
 616 obstructions to complete reducibility. Explicitly\dots
 617 
 618 \begin{theorem}
 619   There is a natural isomorphism \(\operatorname{Ext}^1 \isoto
 620   H^1(\mathfrak{g}, \operatorname{Hom}(-, -))\). In particular, given
 621   \(\mathfrak{g}\)-modules \(N\) and \(L\), there is a one-to-one
 622   correspondence between elements of \(H^1(\mathfrak{g}, \operatorname{Hom}(L,
 623   N))\) and isomorphism classes of short exact sequences
 624   \begin{center}
 625     \begin{tikzcd}
 626       0 \rar & N \rar & M \rar & L \rar & 0
 627     \end{tikzcd}
 628   \end{center}
 629 \end{theorem}
 630 
 631 This is essentially a consequence of Example~\ref{ex:hom-invariants-are-g-homs}
 632 and Theorem~\ref{thm:ext-1-classify-short-seqs}, as well as the minimality
 633 conditions that characterize \(\operatorname{Ext}^1\). For the readers already
 634 familiar with homological algebra: the correspondence between
 635 \(H^1(\mathfrak{g}, \operatorname{Hom}(L, N))\) and short exact sequences of
 636 \(\mathfrak{g}\)-modules can be described in very concrete terms by considering
 637 a canonical free resolution
 638 \begin{center}
 639   \begin{tikzcd}
 640     \cdots                                                    \rar[dashed] &
 641     \mathcal{U}(\mathfrak{g}) \otimes (\wedge^2 \mathfrak{g}) \rar         &
 642     \mathcal{U}(\mathfrak{g}) \otimes \mathfrak{g}            \rar         &
 643     \mathcal{U}(\mathfrak{g})                                 \rar         &
 644     K                                                         \rar         &
 645     0
 646   \end{tikzcd}
 647 \end{center}
 648 of the trivial \(\mathfrak{g}\)-module \(K\), known as \emph{the
 649 Chevalley-Eilenberg resolution}, which provides an explicit construction of the
 650 cohomology groups -- see \cite[sec.~1.3C]{cohomologies-lie} or
 651 \cite[sec.~24]{symplectic-physics} for further details.
 652 
 653 We will use the previous result implicitly in our proof, but we will not prove
 654 it in its full force. Namely, we will show that if \(\mathfrak{g}\) is
 655 semisimple then \(H^1(\mathfrak{g}, M) = 0\) for all finite-dimensional \(M\),
 656 and that the fact that \(H^1(\mathfrak{g}, \operatorname{Hom}(L, N)) = 0\) for
 657 all finite-dimensional \(N\) and \(L\) implies complete reducibility. To that
 658 end, we introduce a distinguished element of \(\mathcal{U}(\mathfrak{g})\),
 659 known as \emph{the Casimir element of a \(\mathfrak{g}\)-module}.
 660 
 661 \begin{definition}\label{def:casimir-element}\index{Casimir element}
 662   Let \(\mathfrak{g}\) be a finite-dimensional semisimple Lie algebra and \(M\)
 663   be a finite-dimensional \(\mathfrak{g}\)-module. Let \(\{X_i\}_i\) be a basis
 664   for \(\mathfrak{g}\) and denote by \(\{X^i\}_i \subset \mathfrak{g}\) its
 665   dual basis with respect to the form \(\kappa_M\) -- i.e. the unique basis for
 666   \(\mathfrak{g}\) satisfying \(\kappa_M(X_i, X^j) = \delta_{i j}\), whose
 667   existence is a consequence of the non-degeneracy of \(\kappa_M\). We call
 668   \[
 669     \Omega_M = X_1 X^1 + \cdots + X_r X^r \in \mathcal{U}(\mathfrak{g})
 670   \]
 671   the \emph{Casimir element of \(M\)}.
 672 \end{definition}
 673 
 674 \begin{lemma}
 675   The definition of \(\Omega_M\) is independent of the choice of basis
 676   \(\{X_i\}_i\).
 677 \end{lemma}
 678 
 679 \begin{proof}
 680   Whatever basis \(\{X_i\}_i\) we choose, the image of \(\Omega_M\) under the
 681   canonical isomorphism \(\mathfrak{g} \otimes \mathfrak{g} \isoto \mathfrak{g}
 682   \otimes \mathfrak{g}^* \isoto \operatorname{End}(\mathfrak{g})\) is the
 683   identity operator\footnote{Here the isomorphism $\mathfrak{g} \otimes
 684   \mathfrak{g} \isoto \mathfrak{g} \otimes \mathfrak{g}^*$ is given by
 685   tensoring the identity $\mathfrak{g} \to \mathfrak{g}$ with the isomorphism
 686   $\mathfrak{g} \isoto \mathfrak{g}^*$ induced by the form $\kappa_M$.}.
 687 \end{proof}
 688 
 689 \begin{proposition}
 690   The Casimir element \(\Omega_M \in \mathcal{U}(\mathfrak{g})\) is central, so
 691   that \(\Omega_M\!\restriction_N : N \to N\) is a
 692   \(\mathfrak{g}\)-homomorphism for any \(\mathfrak{g}\)-module \(N\).
 693   Furthermore, \(\Omega_M\) acts on \(M\) as a nonzero scalar operator whenever
 694   \(M\) is a non-trivial finite-dimensional simple \(\mathfrak{g}\)-module.
 695 \end{proposition}
 696 
 697 \begin{proof}
 698   To see that \(\Omega_M\) is central fix a basis \(\{X_i\}_i\) for
 699   \(\mathfrak{g}\) and denote by \(\{X^i\}_i\) its dual basis with respect to
 700   \(\kappa_M\), as in
 701   Definition~\ref{def:casimir-element}. Given any \(X \in \mathfrak{g}\), it
 702   follows from definition of the \(X^i\) that \(X = \kappa_M(X, X^1) X_1 +
 703   \cdots + \kappa_M(X, X^r) X_r = \kappa_M(X, X_1) X^1 + \cdots + \kappa_M(X,
 704   X_r) X^r\).
 705 
 706   In particular, it follows from the invariance of \(\kappa_M\) that
 707   \[
 708     \begin{split}
 709       [X, \Omega_M]
 710       & = \sum_i [X, X_i X^i] \\
 711       & = \sum_i [X, X_i] X^i + \sum_i X_i [X, X^i] \\
 712       & = \sum_{i j} \kappa_M([X, X_i], X^j) X_j X^i
 713         + \sum_{i j} \kappa_M([X, X^i], X_j) X_i X^j \\
 714       & = \sum_{i j} (\kappa_M([X, X_j], X^i) + \kappa_M(X_j, [X, X^i]))
 715           X_i X^j \\
 716       & = 0
 717     \end{split},
 718   \]
 719   and \(\Omega_M\) is central. This implies that \(\Omega_M\!\restriction_N : N
 720   \to N\) is a \(\mathfrak{g}\)-homomorphism for all \(\mathfrak{g}\)-modules
 721   \(N\): its action commutes with the action of any other element of
 722   \(\mathfrak{g}\).
 723 
 724   In particular, it follows from Schur's Lemma that if \(M\) is
 725   finite-dimensional and simple then \(\Omega_M\) acts on \(M\) as a scalar
 726   operator. To see that this scalar is nonzero we compute
 727   \[
 728     \operatorname{Tr}(\Omega_M\!\restriction_M)
 729     = \operatorname{Tr}(X_1\!\restriction_M X^1\!\restriction_M)
 730     + \cdots
 731     + \operatorname{Tr}(X_r\!\restriction_M X^r\!\restriction_M)
 732     = \dim \mathfrak{g},
 733   \]
 734   so that \(\Omega_M\!\restriction_M = \lambda \operatorname{Id}\) for
 735   \(\lambda = \frac{\dim \mathfrak{g}}{\dim M} \ne 0\).
 736 \end{proof}
 737 
 738 As promised, the Casimir element of a \(\mathfrak{g}\)-module can be used to
 739 establish\dots
 740 
 741 \begin{proposition}\label{thm:first-cohomology-vanishes}
 742   Suppose \(\mathfrak{g}\) is semisimple and let \(M\) be a finite-dimensional
 743   \(\mathfrak{g}\)-module. Then \(H^1(\mathfrak{g}, M) = 0\).
 744 \end{proposition}
 745 
 746 \begin{proof}
 747   We begin by the case where \(M\) is simple. Due to
 748   Theorem~\ref{thm:ext-1-classify-short-seqs}, it suffices to show that any
 749   exact sequence of the form
 750   \begin{equation}\label{eq:exact-seq-h1-vanishes}
 751     \begin{tikzcd}
 752       0 \rar & M \rar{f} & N \rar{g} & K \rar & 0
 753     \end{tikzcd}
 754   \end{equation}
 755   splits.
 756 
 757    If \(M = K\) is the trivial \(\mathfrak{g}\)-module then the exactness of
 758   \begin{equation}\label{eq:trivial-extrems-exact-seq}
 759     \begin{tikzcd}
 760       0 \rar & K \rar{f} & N \rar{g} & K \rar & 0
 761     \end{tikzcd}
 762   \end{equation}
 763   implies \(N\) is 2-dimensional. Take any nonzero \(n \in N\) outside of the
 764   image of \(f\).
 765 
 766   % TODOOOOOOOOO: Fix this
 767   % TODO: U(g) w doesn't need to be irreducible a priori. In fact we will show
 768   % U(g) w = 0, so this whole argument is inconsistant
 769   % TODO: The way to fix this is to prove that rho(g) is both nilpotent --
 770   % because the action of every element of g is strictly upper triangular -- and
 771   % semisimple -- because it is a quotient of g, which is semisimple. We thus
 772   % have rho(g) = 0, so that W is trivial
 773   Since \(\dim N = 2\), the simple component \(\mathcal{U}(\mathfrak{g}) \cdot
 774   n\) of \(n\) in \(N\) is either \(K n\) or \(N\) itself. But this component
 775   cannot be \(N\), since the image of \(f\) is a \(1\)-dimensional
 776   \(\mathfrak{g}\)-module -- i.e. a proper nonzero submodule. Hence \(K n\) is
 777   invariant under the action of \(\mathfrak{g}\). In particular, \(X \cdot n =
 778   0\) for all \(X \in \mathfrak{g}\). Since \(n\) lies outside the image of
 779   \(f\), \(g(n) \ne 0\) -- which is to say, \(n \notin \ker g =
 780   \operatorname{im} f\). This implies the map \(K \to N\) that takes \(1\) to
 781   \(\sfrac{n}{g(n)}\) is a splitting of (\ref{eq:trivial-extrems-exact-seq}).
 782 
 783   Now suppose that \(M\) is non-trivial, so that \(\Omega_M\) acts on \(M\) as
 784   \(\lambda\) for some \(\lambda \ne 0\). Denote by \(N^\mu\) the generalized
 785   eigenspace of \(\Omega_M\!\restriction_N : N \to N\) associated with \(\mu
 786   \in K\). If we identify \(M\) with \(f(M)\), it is clear that \(M \subset
 787   N^\lambda\). The exactness of (\ref{eq:exact-seq-h1-vanishes}) implies \(\dim
 788   N = \dim M + 1\), so that either \(N^\lambda = M\) or \(N^\lambda = N\). But
 789   if \(N^\lambda = N\) then there is some nonzero \(n \in N^\lambda\) with \(n
 790   \notin M = \ker g\) such that
 791   \[
 792     0
 793     = (\Omega_M - \lambda)^r \cdot n
 794     = \sum_{k = 0}^r (-1)^k \binom{r}{k} \lambda^k \Omega_M^{r - k} \cdot n
 795   \]
 796   for some \(r \ge 1\).
 797 
 798   In particular,
 799   \[
 800     (- \lambda)^{r - 1} g(n)
 801     = \sum_{k = 0}^{r - 1} (-1)^k \binom{r}{k} \lambda^k
 802                            g(\Omega_M^{r - k} \cdot n)
 803     = \sum_{k = 0}^{r - 1} (-1)^k \binom{r}{k} \lambda^k
 804       \underbrace{\Omega_M^{r - k} \cdot g(n)}_{= \; 0}
 805     = 0,
 806   \]
 807   which is a contradiction -- given that neither \((-\lambda)^{r - 1}\) nor
 808   \(g(n)\) are nil. Hence \(M = N^\lambda\) and there must be some other
 809   eigenvalue \(\mu\) of \(\Omega_M\!\restriction_N\). For any such \(\mu\) and
 810   any eigenvector \(n \in N_\mu\),
 811   \[
 812     \mu g(n)
 813     = g(\mu n)
 814     = g(\Omega_M \cdot n)
 815     = \Omega_M \cdot g(n)
 816     = 0
 817   \]
 818   implies \(\mu = 0\), so that the eigenvalues of the action of \(\Omega_M\) on
 819   \(N\) are precisely \(\lambda\) and \(0\).
 820 
 821   Now notice that \(N^0\) is in fact a submodule of \(N\). Indeed,
 822   given \(n \in N^0\) and \(X \in \mathfrak{g}\), it follows from the fact that
 823   \(\Omega_M\) is central that
 824   \[
 825     \Omega_M^r \cdot (X \cdot n) = X \cdot (\Omega_M^r \cdot n) = X \cdot 0 = 0
 826   \]
 827   for some \(r\). Hence \(N = M \oplus N^0\) as \(\mathfrak{g}\)-modules. The
 828   homomorphism \(g\) thus induces an isomorphism \(N^0 \cong \mfrac{N}{M}
 829   \isoto K\), which translates to a splitting of
 830   (\ref{eq:exact-seq-h1-vanishes}).
 831 
 832   Finally, we consider the case where \(M\) is not simple. Suppose
 833   \(H^1(\mathfrak{g}, N) = 0\) for all \(\mathfrak{g}\)-modules with \(\dim N <
 834   \dim M\) and let \(N \subset M\) be a proper nonzero submodule. Then the
 835   exact sequence
 836   \begin{center}
 837     \begin{tikzcd}
 838       0 \rar & N \rar & M \rar & \sfrac{M}{N} \rar & 0
 839     \end{tikzcd}
 840   \end{center}
 841   induces a long exact sequence of the form
 842   \begin{equation}\label{eq:standard-h1-ext-seq}
 843     \begin{tikzcd}
 844       \cdots                          \rar[dashed] &
 845       H^1(\mathfrak{g}, N)            \rar         &
 846       H^1(\mathfrak{g}, M)            \rar         &
 847       H^1(\mathfrak{g}, \sfrac{M}{N}) \rar[dashed] &
 848       \cdots
 849     \end{tikzcd}
 850   \end{equation}
 851 
 852   Since \(\dim N < \dim M\), it follows \(H^1(\mathfrak{g}, N) = 0\). In
 853   addition, since \(\dim N > 0\), we find \(\dim \mfrac{M}{N} < \dim M\) and
 854   thus \(H^1(\mathfrak{g}, \sfrac{M}{N}) = 0\). The exactness of
 855   (\ref{eq:standard-h1-ext-seq}) then implies \(H^1(\mathfrak{g}, M) = 0\).
 856   Hence by induction in \(\dim M\) we find \(H^1(\mathfrak{g}, M) = 0\) for all
 857   finite-dimensional \(M\). We are done.
 858 \end{proof}
 859 
 860 We are now finally ready to prove\dots
 861 
 862 \begin{theorem}[Weyl]\label{thm:weyl-theorem}
 863   Given a semisimple Lie algebra \(\mathfrak{g}\), every finite-dimensional
 864   \(\mathfrak{g}\)-module is semisimple.
 865 \end{theorem}
 866 
 867 \begin{proof}
 868   Let
 869   \begin{equation}\label{eq:generict-exact-sequence}
 870     \begin{tikzcd}
 871       0 \rar & N \rar{f} & M \rar{g} & L \rar & 0
 872     \end{tikzcd}
 873   \end{equation}
 874   be a short exact sequence of finite-dimensional \(\mathfrak{g}\)-modules. We
 875   want to establish that (\ref{eq:generict-exact-sequence}) splits.
 876 
 877   We have an exact sequence
 878   \begin{center}
 879     \begin{tikzcd}
 880       0                        \rar            &
 881       \operatorname{Hom}(L, N) \rar{f \circ -} &
 882       \operatorname{Hom}(L, M) \rar{g \circ -} &
 883       \operatorname{Hom}(L, L) \rar            &
 884       0
 885     \end{tikzcd}
 886   \end{center}
 887   of vector spaces. Since all maps involved are \(\mathfrak{g}\)-homomorphisms,
 888   this is an exact sequence of \(\mathfrak{g}\)-modules. This then induces a
 889   long exact sequence
 890   \begin{center}
 891     \begin{tikzcd}
 892       0 \rar                                                   &
 893       \operatorname{Hom}(L, N)^{\mathfrak{g}} \rar{f \circ -}
 894       \ar[draw=none]{d}[name=X, anchor=center]{}               &
 895       \operatorname{Hom}(L, M)^{\mathfrak{g}} \rar{g \circ -}  &
 896       \operatorname{Hom}(L, L)^{\mathfrak{g}}
 897       \ar[rounded corners,
 898           to path={ -- ([xshift=2ex]\tikztostart.east)
 899                     |- (X.center) \tikztonodes
 900                     -| ([xshift=-2ex]\tikztotarget.west)
 901                     -- (\tikztotarget)}]{dll}[at end]{} \\     &
 902       H^1(\mathfrak{g}, \operatorname{Hom}(L, N)) \rar         &
 903       H^1(\mathfrak{g}, \operatorname{Hom}(L, M)) \rar         &
 904       H^1(\mathfrak{g}, \operatorname{Hom}(L, L)) \rar[dashed] &
 905       \cdots
 906     \end{tikzcd}
 907   \end{center}
 908   of vector spaces.
 909 
 910   But \(H^1(\mathfrak{g}, \operatorname{Hom}(L, N))\) vanishes because of
 911   Proposition~\ref{thm:first-cohomology-vanishes}. In addition, recall from
 912   Example~\ref{ex:hom-invariants-are-g-homs} that \(\operatorname{Hom}(L,
 913   L')^{\mathfrak{g}} = \operatorname{Hom}_{\mathfrak{g}}(L, L')\). We thus have
 914   a short exact sequence
 915   \begin{center}
 916     \begin{tikzcd}
 917       0 \rar &
 918       \operatorname{Hom}_{\mathfrak{g}}(L, N) \rar{f \circ -} &
 919       \operatorname{Hom}_{\mathfrak{g}}(L, M) \rar{g \circ -} &
 920       \operatorname{Hom}_{\mathfrak{g}}(L, L) \rar &
 921       0
 922     \end{tikzcd}
 923   \end{center}
 924 
 925   In particular, there is some \(\mathfrak{g}\)-homomorphism \(s : L \to M\)
 926   such that \(g \circ s : L \to L\) is the identity operator. In other words
 927   \begin{center}
 928     \begin{tikzcd}
 929       0 \rar & N \rar{f} & M \rar{g} & L \rar \lar[bend left]{s} & 0
 930     \end{tikzcd}
 931   \end{center}
 932   is a splitting of (\ref{eq:generict-exact-sequence}).
 933 \end{proof}
 934 
 935 Theorem~\ref{thm:weyl-theorem} typically fails in the infinite-dimensional
 936 setting. For instance, consider\dots
 937 
 938 \begin{example}\label{ex:regular-mod-is-not-semisimple}
 939   The regular \(\mathfrak{g}\)-module \(\mathcal{U}(\mathfrak{g})\) is an
 940   indecomposable module which is not simple. In particular,
 941   \(\mathcal{U}(\mathfrak{g})\) is not semisimple. To see this, notice that the
 942   submodules of \(\mathcal{U}(\mathfrak{g})\) are precisely its left ideals. If
 943   we suppose that \(I, J \normal \mathcal{U}(\mathfrak{g})\) are such that
 944   \(\mathcal{U}(\mathfrak{g}) = I \oplus J\) as \(\mathfrak{g}\)-modules, we
 945   can find \(u \in I\) and \(v \in J\) such that \(1 = u + v\). The PBW Theorem
 946   then implies that \(u\) and \(v\) commute, so that \(uv = vu \in I \cap J =
 947   0\). Since \(\mathcal{U}(\mathfrak{g})\) is a domain, either \(u = 0\) or \(v
 948   = 0\). Given that \(1 = u + v\), \(u = 1\) or \(v = 1\). Hence either \(I =
 949   \mathcal{U}(\mathfrak{g})\) and \(J = 0\) or \(I = 0\) and \(J =
 950   \mathcal{U}(\mathfrak{g})\), as required.
 951 \end{example}
 952 
 953 We should point out that these last results are just the beginning of a well
 954 developed cohomology theory. For example, a similar argument involving the
 955 Casimir elements can be used to show that \(H^i(\mathfrak{g}, M) = 0\) for all
 956 semisimple \(\mathfrak{g}\) and all non-trivial finite-dimensional simple
 957 \(M\), \(i > 0\). For \(K = \mathbb{C}\), the Lie algebra cohomology groups of
 958 the algebra \(\mathfrak{g} = \mathbb{C} \otimes \operatorname{Lie}(G)\) are
 959 intimately related with the topological cohomologies -- i.e. singular
 960 cohomology, de Rham cohomology, etc. -- of \(G\) with coefficients in
 961 \(\mathbb{C}\). We refer the reader to \cite{cohomologies-lie} and
 962 \cite[sec.~24]{symplectic-physics} for further details.
 963 
 964 Complete reducibility can be generalized for arbitrary -- not necessarily
 965 semisimple -- \(\mathfrak{g}\), to a certain extent, by considering the exact
 966 sequence
 967 \begin{center}
 968   \begin{tikzcd}
 969     0                                                  \rar &
 970     \mathfrak{rad}(\mathfrak{g})                       \rar &
 971     \mathfrak{g}                                       \rar &
 972     \mfrac{\mathfrak{g}}{\mathfrak{rad}(\mathfrak{g})} \rar &
 973     0
 974   \end{tikzcd}
 975 \end{center}
 976 
 977 This sequence always splits for finite-dimensional \(\mathfrak{g}\), which in
 978 light of Example~\ref{ex:all-simple-reps-are-tensor-prod} implies we can deduce
 979 information about \(\mathfrak{g}\)-modules by studying the modules of its
 980 ``semisimple part'' \(\mfrac{\mathfrak{g}}{\mathfrak{rad}(\mathfrak{g})}\) --
 981 see Proposition~\ref{thm:quotients-by-rads}. In practice this translates
 982 to\dots
 983 
 984 \begin{proposition}[Lie]\label{thm:lie-thm-solvable-reps}
 985   Let \(\mathfrak{g}\) be a solvable Lie algebra. Every finite-dimensional
 986   simple \(\mathfrak{g}\)-module is \(1\)-dimensional.
 987 \end{proposition}
 988 
 989 \begin{corollary}
 990   Let \(\mathfrak{g}\) be a Lie algebra. Every finite-dimensional simple
 991   \(\mathfrak{g}\)-module is the tensor product of a simple
 992   \(\mfrac{\mathfrak{g}}{\mathfrak{rad}(\mathfrak{g})}\)-module and a
 993   \(1\)-dimensional \(\mathfrak{rad}(\mathfrak{g})\)-module.
 994 \end{corollary}
 995 
 996 \begin{proof}
 997   This follows at once from Proposition~\ref{thm:lie-thm-solvable-reps} and
 998   Example~\ref{ex:all-simple-reps-are-tensor-prod}.
 999 \end{proof}
1000 
1001 Having finally reduced our initial classification problem to that of
1002 classifying the finite-dimensional simple \(\mathfrak{g}\)-modules, we can now
1003 focus exclusively in this particular class of \(\mathfrak{g}\)-modules.
1004 However, there is so far no indication on how we could go about understanding
1005 them. In the next chapter we will explore some concrete examples in the hopes
1006 of finding a solution to our general problem.