lie-algebras-and-their-representations
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
simple-weight.tex (81392B)
1 \chapter{Simple Weight Modules}\label{ch:mathieu} 2 3 In this chapter we will expand our results on finite-dimensional simple modules 4 of semisimple Lie algebras by considering \emph{infinite-dimensional} 5 \(\mathfrak{g}\)-modules, which introduces numerous complications to our 6 analysis. 7 8 For instance, in the infinite-dimensional setting we can no longer take 9 complete-reducibility for granted. Indeed, we have seen that even if 10 \(\mathfrak{g}\) is a semisimple Lie algebra, there are infinite-dimensional 11 \(\mathfrak{g}\)-modules which are not semisimple. For a counterexample look no 12 further than Example~\ref{ex:regular-mod-is-not-semisimple}: the regular 13 \(\mathfrak{g}\)-module \(\mathcal{U}(\mathfrak{g})\) is never semisimple. 14 Nevertheless, for simplicity -- or shall we say \emph{semisimplicity} -- we 15 will focus exclusively on \emph{semisimple} \(\mathfrak{g}\)-modules. Our 16 strategy is, once again, that of classifying simple modules. The regular 17 \(\mathfrak{g}\)-module hides further unpleasant surprises, however: recall 18 from Example~\ref{ex:regular-mod-is-not-weight-mod} that 19 \[ 20 \bigoplus_\lambda \mathcal{U}(\mathfrak{g})_\lambda 21 = 0 22 \subsetneq \mathcal{U}(\mathfrak{g}) 23 \] 24 and the weight space decomposition fails for \(\mathcal{U}(\mathfrak{g})\). 25 26 Indeed, our proof of the weight space decomposition in the finite-dimensional 27 case relied heavily in the simultaneous diagonalization of commuting operators 28 in a finite-dimensional space. Even if we restrict ourselves to simple modules, 29 there is still a diverse spectrum of counterexamples to 30 Corollary~\ref{thm:finite-dim-is-weight-mod} in the infinite-dimensional 31 setting. For instance, any \(\mathfrak{g}\)-module \(M\) whose restriction to 32 \(\mathfrak{h}\) is a free module satisfies \(M_\lambda = 0\) for all 33 \(\lambda\) as in Example~\ref{ex:regular-mod-is-not-weight-mod}. These are 34 called \emph{\(\mathfrak{h}\)-free \(\mathfrak{g}\)-modules}, and rank \(1\) 35 simple \(\mathfrak{h}\)-free \(\mathfrak{sp}_{2 n}(K)\)-modules where first 36 classified by Nilsson in \cite{nilsson}. Dimitar's construction of the so 37 called \emph{exponential tensor \(\mathfrak{sl}_n(K)\)-modules} in 38 \cite{dimitar-exp} is also an interesting source of counterexamples. 39 40 Since the weight space decomposition was perhaps the single most instrumental 41 ingredient of our previous analysis, it is only natural to restrict ourselves 42 to the case it holds. This brings us to the following definition. 43 44 \begin{definition}\label{def:weight-mod}\index{\(\mathfrak{g}\)-module!weight modules}\index{weights!weight modules}\index{\(\mathfrak{g}\)-module!(essential) support} 45 A \(\mathfrak{g}\)-module \(M\) is called a \emph{weight 46 \(\mathfrak{g}\)-module} if \(M = \bigoplus_{\lambda \in \mathfrak{h}^*} 47 M_\lambda\) and \(\dim M_\lambda < \infty\) for all \(\lambda \in 48 \mathfrak{h}^*\). The \emph{support of \(M\)} is the set 49 \(\operatorname{supp} M = \{\lambda \in \mathfrak{h}^* : M_\lambda \ne 0\}\). 50 \end{definition} 51 52 \begin{example} 53 Corollary~\ref{thm:finite-dim-is-weight-mod} is equivalent to the fact that 54 every finite-dimensional module of a semisimple Lie algebra is a weight 55 module. More generally, every finite-dimensional simple module of a reductive 56 Lie algebra is a weight module. 57 \end{example} 58 59 \begin{example}\label{ex:reductive-alg-equivalence} 60 We have seen that every finite-dimensional \(\mathfrak{g}\)-module is a 61 weight module for semisimple \(\mathfrak{g}\). In particular, if 62 \(\mathfrak{g}\) is finite-dimensional then the adjoint 63 \(\mathfrak{g}\)-module \(\mathfrak{g}\) is a weight module. More generally, 64 a finite-dimensional Lie algebra \(\mathfrak{g}\) is reductive if, and only 65 if the adjoint \(\mathfrak{g}\)-module \(\mathfrak{g}\) is a weight module, 66 in which case its weight spaces are given by the root spaces of 67 \(\mathfrak{g}\) 68 \end{example} 69 70 \begin{example} 71 Proposition~\ref{thm:high-weight-mod-is-weight-mod} is equivalent to the fact 72 that any highest weight \(\mathfrak{g}\)-module \(M\) of highest weight 73 \(\lambda\) is a weight module whose support is contained in \(\lambda + 74 \mathbb{N} \Delta^- = \{\lambda - k_n \alpha_1 - \cdots - k_n \alpha_n : 75 \alpha_i \in \Delta^+, k_i \in \mathbb{Z}, k_i \ge 0\}\). In particular, 76 Verma modules are weight modules. 77 \end{example} 78 79 \begin{example}\label{ex:submod-is-weight-mod} 80 Proposition~\ref{thm:max-verma-submod-is-weight} implies that the unique 81 maximal submodule \(N(\lambda)\) of \(M(\lambda)\) is a weight module. In 82 fact, the proof of Proposition~\ref{thm:max-verma-submod-is-weight} can be 83 generalized to show that every submodule \(N \subset M\) of a weight module 84 \(M\) is a weight module, and \(N_\lambda = M_\lambda \cap N\) for all 85 \(\lambda \in \mathfrak{h}^*\). 86 \end{example} 87 88 \begin{example}\label{ex:quotient-is-weight-mod} 89 Given a weight module \(M\), a submodule \(N \subset M\) and \(\lambda \in 90 \mathfrak{h}^*\), it is clear that \(\mfrac{M_\lambda}{N} \subset 91 \left(\mfrac{M}{N}\right)_\lambda\). In addition, \(\mfrac{M}{N} = 92 \bigoplus_{\lambda \in \mathfrak{h}^*} \mfrac{M_\lambda}{N}\). Hence 93 \(\mfrac{M}{N}\) is weight \(\mathfrak{g}\)-module with 94 \(\left(\mfrac{M}{N}\right)_\lambda = \mfrac{M_\lambda}{N} \cong 95 \mfrac{M_\lambda}{N_\lambda}\). 96 \end{example} 97 98 \begin{example}\label{ex:tensor-prod-of-weight-is-weight} 99 Let \(\mathfrak{g}_1\) and \(\mathfrak{g}_2\) be Lie algebras, \(M_1\) be a 100 weight \(\mathfrak{g}_1\)-module and \(M_2\) a weight 101 \(\mathfrak{g}_2\)-module. Recall from Example~\ref{ex:cartan-direct-sum} 102 that if \(\mathfrak{h}_i \subset \mathfrak{g}_i\) are Cartan subalgebras then 103 \(\mathfrak{h} = \mathfrak{h}_1 \oplus \mathfrak{h}_2\) is a Cartan 104 subalgebra of \(\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2\) with 105 \(\mathfrak{h}^* = \mathfrak{h}_1^* \oplus \mathfrak{h}_2^*\). In this 106 setting, one can readily check that \(M_1 \otimes M_2\) is a weight 107 \(\mathfrak{g}\)-module with 108 \[ 109 (M_1 \otimes M_2)_{\lambda_1 + \lambda_2} 110 = (M_1)_{\lambda_1} \otimes (M_2)_{\lambda_2} 111 \] 112 for all \(\lambda_i \in \mathfrak{h}_i^*\) and \(\operatorname{supp} (M_1 113 \otimes M_2) = \operatorname{supp} M_1 \oplus \operatorname{supp} M_2 = \{ 114 \lambda_1 + \lambda_2 : \lambda_i \in \operatorname{supp} M_i \subset 115 \mathfrak{h}_i^*\}\). 116 \end{example} 117 118 \begin{example}\label{thm:simple-weight-mod-is-tensor-prod} 119 Let \(\mathfrak{g} = \mathfrak{z} \oplus \mathfrak{s}_1 \oplus \cdots \oplus 120 \mathfrak{s}_r\) be a reductive Lie algebra, where \(\mathfrak{z}\) is the 121 center of \(\mathfrak{g}\) and \(\mathfrak{s}_1, \ldots, \mathfrak{s}_r\) are 122 its simple components. As in 123 Example~\ref{ex:all-simple-reps-are-tensor-prod}, any simple weight 124 \(\mathfrak{g}\)-module \(M\) can be decomposed as 125 \[ 126 M \cong Z \otimes M_1 \otimes \cdots \otimes M_r 127 \] 128 where \(Z\) is a \(1\)-dimensional representation of \(\mathfrak{z}\) and 129 \(M_i\) is a simple weight \(\mathfrak{s}_i\)-module. The modules \(Z\) and 130 \(M_i\) are uniquely determined up to isomorphism. 131 \end{example} 132 133 \begin{example}\label{ex:adjoint-action-in-universal-enveloping-is-weight} 134 We would like to show that the requirement of finite-dimensionality in 135 Definition~\ref{def:weight-mod} is not redundant. Let \(\mathfrak{g}\) be a 136 finite-dimensional reductive Lie algebra and consider the adjoint 137 \(\mathfrak{g}\)-module \(\mathcal{U}(\mathfrak{g})\) -- where \(X \in 138 \mathfrak{g}\) acts by taking commutators. Given \(\alpha \in Q\), a simple 139 computation shows \(K \langle X_1 \cdots X_n H_1 \cdots H_m : X_i \in 140 \mathfrak{g}_{\alpha_i}, H_i \in \mathfrak{h}, \alpha_i \in \Delta, \alpha = 141 \alpha_1 + \cdots + \alpha_n \rangle \subset 142 \mathcal{U}(\mathfrak{g})_\alpha\). The PBW Theorem and 143 Example~\ref{ex:reductive-alg-equivalence} thus imply that 144 \(\mathcal{U}(\mathfrak{g}) = \bigoplus_{\alpha \in Q} 145 \mathcal{U}(\mathfrak{g})_\alpha\) where \(\mathcal{U}(\mathfrak{g})_\alpha = 146 K \langle X_1 \cdots X_n H_1 \cdots H_m : X_i \in \mathfrak{g}_{\alpha_i}, 147 H_i \in \mathfrak{h}, \alpha_i \in \Delta, \alpha = \alpha_1 + \cdots + 148 \alpha_n \rangle\). However, \(\dim \mathcal{U}(\mathfrak{g})_\alpha = 149 \infty\). For instance, \(\mathcal{U}(\mathfrak{g})_0\) is \emph{precisely} 150 the commutator of \(\mathfrak{h}\) in \(\mathcal{U}(\mathfrak{g})\), which 151 contains \(\mathcal{U}(\mathfrak{h})\) and is therefore infinite-dimensional. 152 \end{example} 153 154 \begin{note} 155 We should stress that the weight spaces \(M_\lambda \subset M\) of a given 156 weight \(\mathfrak{g}\)-module \(M\) are \emph{not} 157 \(\mathfrak{g}\)-submodules. Nevertheless, \(M_\lambda\) is a 158 \(\mathfrak{h}\)-submodule. More generally, \(M_\lambda\) is a 159 \(\mathcal{U}(\mathfrak{g})_0\)-submodule, where 160 \(\mathcal{U}(\mathfrak{g})_0\) is the centralizer of \(\mathfrak{h}\) in 161 \(\mathcal{U}(\mathfrak{g})\) -- which coincides with the weight space of \(0 162 \in \mathfrak{h}^*\) in the adjoint \(\mathfrak{g}\)-module 163 \(\mathcal{U}(\mathfrak{g})\), as seen in 164 Example~\ref{ex:adjoint-action-in-universal-enveloping-is-weight}. 165 \end{note} 166 167 A particularly well behaved class of examples are the so called 168 \emph{bounded} modules. 169 170 \begin{definition}\index{\(\mathfrak{g}\)-module!bounded modules}\index{\(\mathfrak{g}\)-module!(essential) support} 171 A weight \(\mathfrak{g}\)-module \(M\) is called \emph{bounded} if \(\dim 172 M_\lambda\) is bounded. The lowest upper bound \(\deg M\) for \(\dim 173 M_\lambda\) is called \emph{the degree of \(M\)}. The \emph{essential 174 support} of \(M\) is the set \(\operatorname{supp}_{\operatorname{ess}} M = 175 \{ \lambda \in \mathfrak{h}^* : \dim M_\lambda = \deg M \}\). 176 \end{definition} 177 178 \begin{example}\label{ex:supp-ess-of-tensor-is-product} 179 Let \(\mathfrak{g}_1\) and \(\mathfrak{g}_2\) be Lie algebras with Cartan 180 subalgebras \(\mathfrak{h}_i \subset \mathfrak{g}_i\) and take \(\mathfrak{g} 181 = \mathfrak{g}_1 \oplus \mathfrak{g}_2\). Given bounded 182 \(\mathfrak{g}_i\)-modules \(M_i\), it follows from 183 Example~\ref{ex:tensor-prod-of-weight-is-weight} that \(M_1 \otimes M_2\) is 184 a bounded \(\mathfrak{g}\)-module with \(\deg M_1 \otimes M_2 = \deg M_1 185 \cdot \deg M_2\) and 186 \[ 187 \operatorname{supp}_{\operatorname{ess}} (M_1 \otimes M_2) 188 = \operatorname{supp}_{\operatorname{ess}} M_1 \oplus 189 \operatorname{supp}_{\operatorname{ess}} M_2 190 = \{ 191 \lambda_1 + \lambda_2 : \lambda_i \in 192 \operatorname{supp}_{\operatorname{ess}} M_i \subset \mathfrak{h}_i^* 193 \} 194 \] 195 \end{example} 196 197 \begin{example}\label{ex:laurent-polynomial-mod} 198 There is a natural action of \(\mathfrak{sl}_2(K)\) on the space \(K[x, 199 x^{-1}]\) of Laurent polynomials, given by the formulas in 200 (\ref{eq:laurent-polynomials-cusp-mod}). One can quickly verify \(K[x, 201 x^{-1}]_{2 k} = K x^k\) and \(K[x, x^{-1}]_\lambda = 0\) for any \(\lambda 202 \notin 2 \mathbb{Z}\), so that \(K[x, x^{-1}] = \bigoplus_{k \in \mathbb{Z}} 203 K x^k\) is a degree \(1\) bounded weight \(\mathfrak{sl}_2(K)\)-module. It 204 follows from the remark at the end of Example~\ref{ex:submod-is-weight-mod} 205 that any nonzero submodule \(N \subset K[x, x^{-1}]\) must contain a 206 monomial \(x^k\). But since the operators \(-\frac{\mathrm{d}}{\mathrm{d}x} + 207 \frac{x^{-1}}{2}, x^2 \frac{\mathrm{d}}{\mathrm{d}x} + \frac{x}{2} : K[x, 208 x^{-1}] \to K[x, x^{-1}]\) are both injective, this implies all other 209 monomials can be found in \(N\) by successively applying \(f\) and \(e\). 210 Hence \(N = K[x, x^{-1}]\) and \(K[x, x^{-1}]\) is a simple module. 211 \begin{align}\label{eq:laurent-polynomials-cusp-mod} 212 e \cdot p 213 & = \left( x^2 \frac{\mathrm{d}}{\mathrm{d}x} + \frac{x}{2} \right) p & 214 f \cdot p 215 & = \left(- \frac{\mathrm{d}}{\mathrm{d}x} + \frac{x^{-1}}{2} \right) p & 216 h \cdot p 217 & = 2 x \frac{\mathrm{d}}{\mathrm{d}x} p 218 \end{align} 219 \end{example} 220 221 Notice that the support of \(K[x, x^{-1}]\) is the trivial \(2 222 \mathbb{Z}\)-coset \(0 + 2 \mathbb{Z}\). This is representative of the general 223 behavior in the following sense: if \(M\) is a simple weight 224 \(\mathfrak{g}\)-module, since \(M[\lambda] = \bigoplus_{\alpha \in Q} 225 M_{\lambda + \alpha}\) is stable under the action of \(\mathfrak{g}\) for all 226 \(\lambda \in \mathfrak{h}^*\), \(\bigoplus_{\alpha \in Q} M_{\lambda + 227 \alpha}\) is either \(0\) or all of \(M\). In other words, the support of a 228 simple weight module is always contained in a single \(Q\)-coset. 229 230 However, the behavior of \(K[x, x^{-1}]\) deviates from that of an arbitrary 231 bounded \(\mathfrak{g}\)-module in the sense its essential support is 232 precisely the entire \(Q\)-coset it inhabits -- i.e. 233 \(\operatorname{supp}_{\operatorname{ess}} K[x, x^{-1}] = 2 \mathbb{Z}\). This 234 isn't always the case. Nevertheless, in general we find\dots 235 236 \begin{proposition}\label{thm:ess-supp-is-zariski-dense} 237 Let \(\mathfrak{g}\) be a finite-dimensional semisimple Lie algebra and \(M\) 238 be a simple infinite-dimensional bounded \(\mathfrak{g}\)-module. The 239 essential support \(\operatorname{supp}_{\operatorname{ess}} M\) is 240 Zariski-dense\footnote{Any choice of basis for $\mathfrak{h}^*$ induces a 241 $K$-linear isomorphism $\mathfrak{h}^* \isoto K^n$. In particular, a choice 242 of basis induces a unique topology in $\mathfrak{h}^*$ such that the map 243 $\mathfrak{h}^* \to K^n$ is a homeomorphism onto $K^n$ with the Zariski 244 topology. Any two basis induce the same topology in $\mathfrak{h}^*$, which 245 we call \emph{the Zariski topology of $\mathfrak{h}^*$}.} in 246 \(\mathfrak{h}^*\). 247 \end{proposition} 248 249 This proof was deemed too technical to be included in here, but see Proposition 250 3.5 of \cite{mathieu} for the case where \(\mathfrak{g} = \mathfrak{s}\) is a 251 simple Lie algebra. The general case then follows from 252 Example~\ref{thm:simple-weight-mod-is-tensor-prod}, 253 Example~\ref{ex:supp-ess-of-tensor-is-product} and the asserting that the 254 product of Zariski-dense subsets in \(K^n\) and \(K^m\) is Zariski-dense in 255 \(K^{n + m} = K^n \times K^m\). 256 257 We now begin a systematic investigation of the problem of classifying the 258 infinite-dimensional simple weight modules of a given Lie algebra 259 \(\mathfrak{g}\). As in the previous chapter, let \(\mathfrak{g}\) be a 260 finite-dimensional semisimple Lie algebra. As a first approximation of a 261 solution to our problem, we consider the Verma modules \(M(\lambda)\) for 262 \(\lambda \in \mathfrak{h}^*\) which is not dominant integral. After all, the 263 simple quotients of Verma modules form a remarkably large class of 264 infinite-dimensional simple weight modules -- at least as large as 265 \(\mathfrak{h}^* \setminus P^+\)! More generally, the induction functor 266 \(\operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{g}} : 267 \mathfrak{b}\text{-}\mathbf{Mod} \to \mathfrak{g}\text{-}\mathbf{Mod}\) has 268 proven itself a powerful tool for constructing modules. 269 270 We claim this is not an unmotivated guess. Specifically, there are very good 271 reasons behind the choice to consider induction over the Borel subalgebra 272 \(\mathfrak{b} \subset \mathfrak{g}\). First, the fact that \(\mathfrak{h} 273 \subset \mathfrak{g}\) affords us great control over the weight spaces of 274 \(\operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{g}} M\): by assigning a 275 prescribed action of \(\mathfrak{h}\) to \(M\) we can ensure that 276 \(\operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{g}} M = \bigoplus_\lambda 277 (\operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{g}} M)_\lambda\). In addition, we 278 have seen in the proof of Proposition~\ref{thm:high-weight-mod-is-weight-mod} 279 that by requiring that the positive part of \(\mathfrak{b}\) acts on \(M\) by 280 zero we can ensure that \(\dim 281 (\operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{g}} M)_\lambda < \infty\). All in 282 all, the nature of \(\mathfrak{b}\) affords us just enough control to guarantee 283 that \(\operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{g}} M\) is a weight module 284 for sufficiently well behaved \(M\). 285 286 Unfortunately for us, this is still too little control: there are simple weight 287 modules which are not of the form \(L(\lambda)\). More generally, we may 288 consider induction over some parabolic subalgebra \(\mathfrak{p} \subset 289 \mathfrak{g}\) -- i.e. some subalgebra such that \(\mathfrak{p} \supset 290 \mathfrak{b}\). This leads us to the following definition. 291 292 \begin{definition}\index{\(\mathfrak{g}\)-module!(generalized) Verma modules} 293 Let \(\mathfrak{p} \subset \mathfrak{g}\) be a parabolic subalgebra and \(M\) 294 be a simple \(\mfrac{\mathfrak{p}}{\mathfrak{nil}(\mathfrak{p})}\)-module. We 295 can view \(M\) as a \(\mathfrak{p}\)-module where 296 \(\mathfrak{nil}(\mathfrak{p})\) acts by zero by setting \(X \cdot m = (X + 297 \mathfrak{nil}(\mathfrak{p})) \cdot m\) for all \(m \in M\) and \(X \in 298 \mathfrak{p}\) -- which is the same as the \(\mathfrak{p}\)-module given by 299 composing the action map \(\mfrac{\mathfrak{p}}{\mathfrak{nil}(\mathfrak{p})} 300 \to \mathfrak{gl}(M)\) with the projection \(\mathfrak{p} \to 301 \mfrac{\mathfrak{p}}{\mathfrak{nil}(\mathfrak{p})}\). The module 302 \(M_{\mathfrak{p}}(M) = \operatorname{Ind}_{\mathfrak{p}}^{\mathfrak{g}} M\) 303 is called \emph{generalized Verma module associated with \(M\)}. 304 \end{definition} 305 306 \begin{example} 307 It is not hard to see that 308 \(\mfrac{\mathfrak{b}}{\mathfrak{nil}(\mathfrak{b})} = \mathfrak{h}\). If we 309 take \(\lambda \in \mathfrak{h}^*\) and let \(K m^+\) be the 310 \(1\)-dimensional \(\mathfrak{h}\)-module where \(\mathfrak{h}\) acts by 311 \(\lambda\) then \(M(\lambda) = M_{\mathfrak{b}}(K m^+)\). 312 \end{example} 313 314 As promised, \(M_{\mathfrak{p}}(M)\) is generally well behaved for well behaved 315 \(M\). In particular, if \(M\) is highest weight 316 \(\mfrac{\mathfrak{p}}{\mathfrak{nil}(\mathfrak{p})}\)-module then 317 \(M_{\mathfrak{p}}(M)\) is also a highest weight \(\mathfrak{g}\)-module, and 318 if \(M\) is a weight 319 \(\mfrac{\mathfrak{p}}{\mathfrak{nil}(\mathfrak{p})}\)-module then 320 \(M_{\mathfrak{p}}(M)\) is a weight module with \(M_{\mathfrak{p}}(M)_\lambda = 321 \sum_{\alpha + \mu = \lambda} \mathcal{U}(\mathfrak{g})_\alpha 322 \otimes_{\mathcal{U}(\mathfrak{p})} M_\mu\), -- see Lemma 1.1 of \cite{mathieu} 323 for a full proof. However, \(M_{\mathfrak{p}}(M)\) is not simple in general. 324 Indeed, regular Verma modules not necessarily simple. This issue may be dealt 325 with by passing to the simple quotients of \(M_{\mathfrak{p}}(M)\). 326 327 Let \(M\) be a simple weight 328 \(\mfrac{\mathfrak{p}}{\mathfrak{nil}(\mathfrak{p})}\)-module. As it turns out, 329 the situation encountered in Proposition~\ref{thm:max-verma-submod-is-weight} 330 is also verified in the general setting. Namely, since \(M_{\mathfrak{p}}(M)\) 331 is generated by \(K \otimes_{\mathcal{U}(\mathfrak{p})} M = \bigoplus_{\lambda 332 \in Q + \operatorname{supp} M} M_{\mathfrak{p}}(M)_\lambda\), it follows that 333 any proper submodule of \(M_{\mathfrak{p}}(M)\) is contained in 334 \(\bigoplus_{\lambda \notin Q + \operatorname{supp} M} 335 M_{\mathfrak{p}}(M)_\lambda\). The sum \(N_{\mathfrak{p}}(M)\) of all such 336 submodules is thus the unique maximal submodule of \(M_{\mathfrak{p}}(M)\) and 337 \(L_{\mathfrak{p}}(M) = \mfrac{M_{\mathfrak{p}}(M)}{N_{\mathfrak{p}}(M)}\) is 338 its unique simple quotient -- again, we refer the reader to \cite{mathieu} for 339 a complete proof. This leads us to the following definition. 340 341 \begin{definition}\index{\(\mathfrak{g}\)-module!parabolic induced modules}\index{\(\mathfrak{g}\)-module!cuspidal modules} 342 A simple weight \(\mathfrak{g}\)-module is called \emph{parabolic induced} if 343 it is isomorphic to \(L_{\mathfrak{p}}(M)\) for some proper parabolic 344 subalgebra \(\mathfrak{p} \subsetneq \mathfrak{g}\) and some simple weight 345 \(\mfrac{\mathfrak{p}}{\mathfrak{nil}(\mathfrak{p})}\)-module \(M\). A 346 \emph{cuspidal \(\mathfrak{g}\)-module} is a simple weight 347 \(\mathfrak{g}\)-module which is \emph{not} parabolic induced. 348 \end{definition} 349 350 The first breakthrough regarding our classification problem was given by 351 Fernando in his now infamous paper \citetitle{fernando} \cite{fernando}, where 352 he proved that every simple weight \(\mathfrak{g}\)-module is parabolic 353 induced by a cuspidal module. 354 355 \begin{theorem}[Fernando] 356 Any simple weight \(\mathfrak{g}\)-module is isomorphic to 357 \(L_{\mathfrak{p}}(M)\) for some parabolic subalgebra \(\mathfrak{p} \subset 358 \mathfrak{g}\) and some cuspidal 359 \(\mfrac{\mathfrak{p}}{\mathfrak{nil}(\mathfrak{p})}\)-module \(M\). 360 \end{theorem} 361 362 We should point out that the relationship between simple weight 363 \(\mathfrak{g}\)-modules and pairs \((\mathfrak{p}, M)\) is not one-to-one. 364 Nevertheless, this relationship is well understood. Namely, Fernando himself 365 established\dots 366 367 \begin{proposition}[Fernando] 368 Given a parabolic subalgebra \(\mathfrak{p} \subset \mathfrak{g}\), there 369 exists a basis \(\Sigma\) for \(\Delta\) such that \(\Sigma \subset 370 \Delta_{\mathfrak{p}} \subset \Delta\), where \(\Delta_{\mathfrak{p}}\) 371 denotes the set of roots of \(\mathfrak{p}\). Furthermore, if \(\mathfrak{p}' 372 \subset \mathfrak{g}\) is another parabolic subalgebra, \(M\) is a cuspidal 373 \(\mfrac{\mathfrak{p}}{\mathfrak{nil}(\mathfrak{p})}\)-module and \(N\) is a 374 cuspidal \(\mfrac{\mathfrak{p}'}{\mathfrak{nil}(\mathfrak{p}')}\)-module then 375 \(L_{\mathfrak{p}}(M) \cong L_{\mathfrak{p}'}(N)\) if, and only if 376 \(\mathfrak{p}' = \twisted{\mathfrak{p}}{\sigma}\) and \(M \cong 377 \twisted{N}{\sigma}\) as \(\mathfrak{p}\)-modules for some\footnote{Here 378 $\twisted{\mathfrak{p}}{\sigma}$ denotes the image of $\mathfrak{p}$ under 379 the automorphism of $\sigma : \mathfrak{g} \to \mathfrak{g}$ given by the 380 canonical action of $W$ on $\mathfrak{g}$ and $\twisted{N}{\sigma}$ is the 381 $\mathfrak{p}$-module given by composing the map $\mathfrak{p}' \to 382 \mathfrak{gl}(N)$ with the restriction $\sigma\!\restriction_{\mathfrak{p}} : 383 \mathfrak{p} \to \mathfrak{p}'$.} \(\sigma \in W_M\), where 384 \[ 385 W_M 386 = \langle 387 \sigma_\beta : \beta \in \Sigma, H_\beta + \mathfrak{nil}(\mathfrak{p}) 388 \ \text{is central in}\ \mfrac{\mathfrak{p}}{\mathfrak{nil}(\mathfrak{p})} 389 \ \text{and}\ H_\beta\ \text{acts on \(M\) as a positive integer} 390 \rangle 391 \subset W 392 \] 393 \end{proposition} 394 395 \begin{note} 396 The definition of the subgroup \(W_M \subset W\) is independent of the choice 397 of basis \(\Sigma\). 398 \end{note} 399 400 As a first consequence of Fernando's Theorem, we provide two alternative 401 characterizations of cuspidal modules. 402 403 \begin{corollary}[Fernando]\label{thm:cuspidal-mod-equivs} 404 Let \(M\) be a simple weight \(\mathfrak{g}\)-module. The following 405 conditions are equivalent. 406 \begin{enumerate} 407 \item \(M\) is cuspidal. 408 \item \(F_\alpha\) acts injectively on \(M\) for all 409 \(\alpha \in \Delta\). 410 \item The support of \(M\) is precisely one \(Q\)-coset. 411 \end{enumerate} 412 \end{corollary} 413 414 \begin{example} 415 As noted in Example~\ref{ex:laurent-polynomial-mod}, the element \(f \in 416 \mathfrak{sl}_2(K)\) acts injectively on the space of Laurent polynomials. 417 Hence \(K[x, x^{-1}]\) is a cuspidal \(\mathfrak{sl}_2(K)\)-module. 418 \end{example} 419 420 Having reduced our classification problem to that of classifying cuspidal 421 modules, we are now faced the daunting task of actually classifying them. 422 Historically, this was first achieved by Olivier Mathieu in the early 2000's in 423 his paper \citetitle{mathieu} \cite{mathieu}. To do so, Mathieu introduced new 424 tools which have since proved themselves remarkably useful throughout the 425 field, known as\dots 426 427 \section{Coherent Families} 428 429 We begin our analysis with a simple question: how to do we go about 430 constructing cuspidal modules? Specifically, given a cuspidal 431 \(\mathfrak{g}\)-module, how can we use it to produce new cuspidal modules? To 432 answer this question, we look back at the single example of a cuspidal module 433 we have encountered so far: the \(\mathfrak{sl}_2(K)\)-module \(K[x, x^{-1}]\) 434 of Laurent polynomials -- i.e. Example~\ref{ex:laurent-polynomial-mod}. 435 436 Our first observation is that \(\mathfrak{sl}_2(K)\) acts on \(K[x, x^{-1}]\) 437 via differential operators. In other words, the action map 438 \(\mathcal{U}(\mathfrak{sl}_2(K)) \to \operatorname{End}(K[x, x^{-1}])\) 439 factors through the inclusion of the algebra \(\operatorname{Diff}(K[x, 440 x^{-1}]) = K\left[x, x^{-1}, \frac{\mathrm{d}}{\mathrm{d}x}\right]\) of 441 differential operators in \(K[x, x^{-1}]\). 442 \begin{center} 443 \begin{tikzcd} 444 \mathcal{U}(\mathfrak{sl}_2(K)) \rar & 445 \operatorname{Diff}(K[x, x^{-1}]) \rar & 446 \operatorname{End}(K[x, x^{-1}]) 447 \end{tikzcd} 448 \end{center} 449 450 The space \(K[x, x^{-1}]\) can be regarded as a \(\operatorname{Diff}(K[x, 451 x^{-1}])\)-module in the natural way, and we can produce new 452 \(\operatorname{Diff}(K[x, x^{-1}])\)-modules by twisting \(K[x, x^{-1}]\) by 453 automorphisms of \(\operatorname{Diff}(K[x, x^{-1}])\). For example, given 454 \(\lambda \in K\) we may take the automorphism 455 \begin{align*} 456 \varphi_\lambda : \operatorname{Diff}(K[x, x^{-1}]) & 457 \to \operatorname{Diff}(K[x, x^{-1}]) \\ 458 x & \mapsto x \\ 459 x^{-1} & \mapsto x^{-1} \\ 460 \frac{\mathrm{d}}{\mathrm{d} x} & \mapsto \frac{\mathrm{d}}{\mathrm{d} x} + 461 \frac{\lambda}{2} x^{-1} 462 \end{align*} 463 and consider the twisted module \(\twisted{K[x, x^{-1}]}{\varphi_\lambda} = 464 K[x, x^{-1}]\), where some operator \(P \in \operatorname{Diff}(K[x, x^{-1}])\) 465 acts as \(\varphi_\lambda(P)\). 466 467 By composing the action map \(\operatorname{Diff}(K[x, x^{-1}]) \to 468 \operatorname{End}(\twisted{K[x, x^{-1}]}{\varphi_\lambda})\) with the 469 homomorphism of algebras \(\mathcal{U}(\mathfrak{sl}_2(K)) \to 470 \operatorname{Diff}(K[x, x^{-1}])\) we can give \(\twisted{K[x, 471 x^{-1}]}{\varphi_\lambda}\) the structure of an \(\mathfrak{sl}_2(K)\)-module. 472 Diagrammatically, we have 473 \begin{center} 474 \begin{tikzcd} 475 \mathcal{U}(\mathfrak{sl}_2(K)) \rar & 476 \operatorname{Diff}(K[x, x^{-1}]) \rar{\varphi_\lambda} & 477 \operatorname{Diff}(K[x, x^{-1}]) \rar & 478 \operatorname{End}(K[x, x^{-1}]) 479 \end{tikzcd}, 480 \end{center} 481 where the maps \(\mathcal{U}(\mathfrak{sl}_2(K)) \to \operatorname{Diff}(K[x, 482 x^{-1}])\) and \(\operatorname{Diff}(K[x, x^{1}]) \to \operatorname{End}(K[x, 483 x^{-1}])\) are the ones from the previous diagram. 484 485 Explicitly, we find that the action of \(\mathfrak{sl}_2(K)\) on 486 \(\twisted{K[x, x^{-1}]}{\varphi_\lambda}\) is given by 487 \begin{align*} 488 p & \overset{e}{\mapsto} 489 \left( 490 x^2 \frac{\mathrm{d}}{\mathrm{d}x} + \frac{1 + \lambda}{2} x 491 \right) p & 492 p & \overset{f}{\mapsto} 493 \left( 494 - \frac{\mathrm{d}}{\mathrm{d}x} + \frac{1 - \lambda}{2} x^{-1} 495 \right) p & 496 p & \overset{h}{\mapsto} 497 \left( 2 x \frac{\mathrm{d}}{\mathrm{d}x} + \lambda \right) p, 498 \end{align*} 499 so we can see \(\twisted{K[x, x^{-1}]}{\varphi_\lambda}_{2 k + 500 \frac{\lambda}{2}} = K x^k\) for all \(k \in \mathbb{Z}\) and \(\twisted{K[x, 501 x^{-1}]}{\varphi_\lambda}_\mu = 0\) for all other \(\mu \in \mathfrak{h}^*\). 502 503 Hence \(\twisted{K[x, x^{-1}]}{\varphi_\lambda}\) is a degree \(1\) bounded 504 \(\mathfrak{sl}_2(K)\)-module with \(\operatorname{supp} \twisted{K[x, 505 x^{-1}]}{\varphi_\lambda} = \frac{\lambda}{2} + 2 \mathbb{Z}\). One can also 506 quickly check that if \(\lambda \notin 1 + 2 \mathbb{Z}\) then \(e\) and \(f\) 507 act injectively in \(\twisted{K[x, x^{-1}]}{\varphi_\lambda}\), so that 508 \(\twisted{K[x, x^{-1}]}{\varphi_\lambda}\) is simple. In particular, if 509 \(\lambda, \mu \notin 1 + 2 \mathbb{Z}\) with \(\lambda \notin \mu + 2 510 \mathbb{Z}\) then \(\twisted{K[x, x^{-1}]}{\varphi_\lambda}\) and 511 \(\twisted{K[x, x^{-1}]}{\varphi_\mu}\) are non-isomorphic cuspidal 512 \(\mathfrak{sl}_2(K)\)-modules, since their supports differ. These cuspidal 513 modules can be ``glued together'' in a \emph{monstrous concoction} by summing 514 over \(\lambda \in K\), as in 515 \[ 516 \mathcal{M} 517 = \bigoplus_{\lambda + 2 \mathbb{Z} \in \mfrac{K}{2 \mathbb{Z}}} 518 \twisted{K[x, x^{-1}]}{\varphi_\lambda}, 519 \] 520 521 To a distracted spectator, \(\mathcal{M}\) may look like just another, 522 innocent, \(\mathfrak{sl}_2(K)\)-module. However, the attentive reader may have 523 already noticed some of the its bizarre features, most noticeable of which is 524 the fact that \(\mathcal{M}\) is very big. In fact, \(\mathcal{M}\) is as big a 525 degree \(1\) bounded module gets: \(\operatorname{supp} \mathcal{M} 526 = \operatorname{supp}_{\operatorname{ess}} \mathcal{M}\) is the entirety of 527 \(\mathfrak{h}^*\). This may look very alien the reader familiarized with the 528 finite-dimensional setting, where the configuration of weights is very rigid. 529 For this reason, \(\mathcal{M}\) deserves to be called ``a monstrous 530 concoction''. 531 532 On a perhaps less derogatory note, \(\mathcal{M}\) also deserves to be called 533 \emph{a family}. This is because \(\mathcal{M}\) consists of lots of smaller 534 cuspidal modules which fit together inside of it in a \emph{coherent} fashion. 535 Mathieu's ingenious breakthrough was the realization that \(\mathcal{M}\) is a 536 particular example of a more general pattern, which he named \emph{coherent 537 families}. 538 539 \begin{definition}\index{coherent family} 540 A \emph{coherent family \(\mathcal{M}\) of degree \(d\)} is a weight 541 \(\mathfrak{g}\)-module \(\mathcal{M}\) such that 542 \begin{enumerate} 543 \item \(\dim \mathcal{M}_\lambda = d\) for \emph{all} \(\lambda \in 544 \mathfrak{h}^*\) -- i.e. \(\operatorname{supp}_{\operatorname{ess}} 545 \mathcal{M} = \mathfrak{h}^*\). 546 \item For any \(u \in \mathcal{U}(\mathfrak{g})\) in the centralizer 547 \(\mathcal{U}(\mathfrak{g})_0\) of \(\mathfrak{h}\) in 548 \(\mathcal{U}(\mathfrak{g})\), the map 549 \begin{align*} 550 \mathfrak{h}^* & \to K \\ 551 \lambda & \mapsto 552 \operatorname{Tr}(u\!\restriction_{\mathcal{M}_\lambda}) 553 \end{align*} 554 is polynomial in \(\lambda\). 555 \end{enumerate} 556 \end{definition} 557 558 \begin{example}\label{ex:sl-laurent-family} 559 The module \(\mathcal{M} = \bigoplus_{\lambda + 2 \mathbb{Z} \in 560 \mfrac{K}{2 \mathbb{Z}}} \twisted{K[x, x^{-1}]}{\varphi_\lambda}\) is a 561 degree \(1\) coherent \(\mathfrak{sl}_2(K)\)-family. 562 \end{example} 563 564 \begin{example} 565 Given \(\lambda \in K\), \(\mathcal{M}(\lambda) = \bigoplus_{\mu \in K} K 566 x^\mu\) with 567 \begin{align*} 568 p & \overset{e}{\mapsto} 569 \left(x^2 \frac{\mathrm{d}}{\mathrm{d}x} + \lambda x\right) p & 570 p & \overset{f}{\mapsto} 571 \left(-\frac{\mathrm{d}}{\mathrm{d}x} + \lambda x^{-1}\right) p & 572 p & \overset{h}{\mapsto} 2 x \frac{\mathrm{d}}{\mathrm{d}x} p, 573 \end{align*} 574 is a degree \(1\) coherent \(\mathfrak{sl}_2(K)\)-family -- where \(x^{\pm 575 1}, \sfrac{\mathrm{d}}{\mathrm{d}x} : \mathcal{M}(\lambda) \to 576 \mathcal{M}(\lambda)\) are given by \(x^{\pm 1} x^\mu = x^{\mu \pm 1}\) and 577 \(\sfrac{\mathrm{d}}{\mathrm{d}x} x^\mu = \mu x^{\mu - 1}\). It is easy to 578 check \(\mathcal{M}\) from Example~\ref{ex:sl-laurent-family} is isomorphic 579 to \(\mathcal{M}(\sfrac{1}{2})\) and \((\mathcal{M}(\sfrac{1}{2}))[0] \cong 580 K[x, x^{-1}]\). 581 \end{example} 582 583 \begin{note} 584 We would like to stress that coherent families have proven themselves useful 585 for problems other than the classification of cuspidal 586 \(\mathfrak{g}\)-modules. For instance, Nilsson's classification of rank 1 587 \(\mathfrak{h}\)-free \(\mathfrak{sp}_{2 n}(K)\)-modules is based on the 588 notion of coherent families and the so called \emph{weighting functor}. 589 \end{note} 590 591 Our hope is that given a cuspidal module \(M\), we can somehow fit \(M\) inside 592 of a coherent \(\mathfrak{g}\)-family, such as in the case of \(K[x, x^{-1}]\) 593 and \(\mathcal{M}\) from Example~\ref{ex:sl-laurent-family}. In addition, we 594 hope that such coherent families are somehow \emph{uniquely determined} by 595 \(M\). This leads us to the following definition. 596 597 \begin{definition}\index{coherent family!coherent extension} 598 Given a bounded \(\mathfrak{g}\)-module \(M\) of degree \(d\), a 599 \emph{coherent extension \(\mathcal{M}\) of \(M\)} is a coherent family 600 \(\mathcal{M}\) of degree \(d\) that contains \(M\) as a subquotient. 601 \end{definition} 602 603 Our goal is now showing that every simple bounded module has a coherent 604 extension. The idea then is to classify coherent families, and classify which 605 submodules of a given coherent family are actually cuspidal modules. If every 606 simple bounded \(\mathfrak{g}\)-module fits inside a coherent extension, this 607 would lead to classification of all cuspidal \(\mathfrak{g}\)-modules, which we 608 now know is the key for the solution of our classification problem. However, 609 there are some complications to this scheme. 610 611 Leaving aside the question of existence for a second, we should point out that 612 coherent families turn out to be rather complicated on their own. In fact they 613 are too complicated to classify in general. Ideally, we would like to find 614 \emph{nice} coherent extensions -- ones we can actually classify. For instance, 615 we may search for \emph{irreducible} coherent extensions, which are defined as 616 follows. 617 618 \begin{definition}\index{coherent family!irreducible coherent family} 619 A coherent family \(\mathcal{M}\) is called \emph{irreducible} if it contains 620 no proper coherent subfamilies -- i.e. \(\mathcal{M}\) is a simple object in 621 the full subcategory of \(\mathfrak{g}\text{-}\mathbf{Mod}\) consisting of 622 coherent families. Equivalently, we call \(\mathcal{M}\) irreducible if 623 \(\mathcal{M}_\lambda\) is a simple \(\mathcal{U}(\mathfrak{g})_0\)-module 624 for some \(\lambda \in \mathfrak{h}^*\). 625 \end{definition} 626 627 Another natural candidate for the role of ``nice extensions'' are the 628 semisimple coherent families -- i.e. families which are semisimple as 629 \(\mathfrak{g}\)-modules. These turn out to be very easy to produce. Namely, 630 there is a construction, known as \emph{the semisimplification of a coherent 631 family}, which takes a coherent extension of \(M\) to a semisimple coherent 632 extension of \(M\). 633 634 % Mathieu's proof of this is somewhat profane, I don't think it's worth 635 % including it in here 636 % TODO: Move this somewhere else? This holds in general for weight modules 637 % whose suppert is contained in a single Q-coset 638 \begin{lemma}\label{thm:component-coh-family-has-finite-length} 639 Given a coherent family \(\mathcal{M}\) and \(\lambda \in \mathfrak{h}^*\), 640 \(\mathcal{M}[\lambda]\) has finite length as a \(\mathfrak{g}\)-module. 641 \end{lemma} 642 643 \begin{proposition}\index{coherent family!semisimplification} 644 Let \(\mathcal{M}\) be a coherent family of degree \(d\). There exists a 645 unique semisimple coherent family \(\mathcal{M}^{\operatorname{ss}}\) of 646 degree \(d\) such that the composition series of 647 \(\mathcal{M}^{\operatorname{ss}}[\lambda]\) is the same as that of 648 \(\mathcal{M}[\lambda]\) for all \(\lambda \in \mathfrak{h}^*\), called 649 \emph{the semisimplification of \(\mathcal{M}\)}. 650 651 Namely, if \(\lambda \in \mathfrak{h}^*\) and \(0 = \mathcal{M}_{\lambda 0} 652 \subset \mathcal{M}_{\lambda 1} \subset \cdots \subset \mathcal{M}_{\lambda 653 r_\lambda} = \mathcal{M}[\lambda]\) is a composition series\footnote{Notice 654 that $\mathcal{M}[\lambda] = \mathcal{M}[\mu]$ for any $\mu \in \lambda + Q$. 655 Hence the sum $\bigoplus_{\lambda + Q \in \mfrac{\mathfrak{h}^*}{Q}} 656 \bigoplus_i \mfrac{\mathcal{M}_{\lambda i + 1}}{\mathcal{M}_{\lambda i}}$ is 657 independent of the choice of representative for $\lambda + Q$ -- provided we 658 choose $\mathcal{M}_{\mu i} = \mathcal{M}_{\lambda i}$ for all $\mu \in 659 \lambda + Q$ and $i$.}, 660 \[ 661 \mathcal{M}^{\operatorname{ss}} 662 \cong \bigoplus_{\substack{\lambda + Q \in \mfrac{\mathfrak{h}^*}{Q} \\ i}} 663 \mfrac{\mathcal{M}_{\lambda i + 1}}{\mathcal{M}_{\lambda i}} 664 \] 665 \end{proposition} 666 667 \begin{proof} 668 The uniqueness of \(\mathcal{M}^{\operatorname{ss}}\) should be clear: 669 since \(\mathcal{M}^{\operatorname{ss}}\) is semisimple, so is 670 \(\mathcal{M}^{\operatorname{ss}}[\lambda]\). Hence by the Jordan-Hölder 671 Theorem 672 \[ 673 \mathcal{M}^{\operatorname{ss}}[\lambda] 674 \cong 675 \bigoplus_i \mfrac{\mathcal{M}_{\lambda i + 1}}{\mathcal{M}_{\lambda i}} 676 \] 677 678 As for the existence of the semisimplification, it suffices to show 679 \[ 680 \mathcal{M}^{\operatorname{ss}} 681 = \bigoplus_{\substack{\lambda + Q \in \mfrac{\mathfrak{h}^*}{Q} \\ i}} 682 \mfrac{\mathcal{M}_{\lambda i + 1}}{\mathcal{M}_{\lambda i}} 683 \] 684 is indeed a semisimple coherent family of degree \(d\). 685 686 We know from Examples~\ref{ex:submod-is-weight-mod} and 687 \ref{ex:quotient-is-weight-mod} that each quotient 688 \(\mfrac{\mathcal{M}_{\lambda i + 1}}{\mathcal{M}_{\lambda i}}\) is a weight 689 module. Hence \(\mathcal{M}^{\operatorname{ss}}\) is a weight module. 690 Furthermore, given \(\mu \in \mathfrak{h}^*\) 691 \[ 692 \mathcal{M}_\mu^{\operatorname{ss}} 693 = \bigoplus_{\substack{\lambda + Q \in \mfrac{\mathfrak{h}^*}{Q} \\ i}} 694 \left( 695 \mfrac{\mathcal{M}_{\lambda i + 1}}{\mathcal{M}_{\lambda i}} 696 \right)_\mu 697 = \bigoplus_i 698 \left( 699 \mfrac{\mathcal{M}_{\mu i + 1}}{\mathcal{M}_{\mu i}} 700 \right)_\mu 701 \cong \bigoplus_i 702 \mfrac{(\mathcal{M}_{\mu i + 1})_\mu} 703 {(\mathcal{M}_{\mu i})_\mu} 704 \] 705 706 In particular, 707 \[ 708 \dim \mathcal{M}_\mu^{\operatorname{ss}} 709 = \sum_i 710 \dim (\mathcal{M}_{\mu i + 1})_\mu - \dim (\mathcal{M}_{\mu i})_\mu 711 = \dim \mathcal{M}[\mu]_\mu 712 = \dim \mathcal{M}_\mu 713 = d 714 \] 715 716 Likewise, given \(u \in \mathcal{U}(\mathfrak{g})_0\) the value 717 \[ 718 \operatorname{Tr}(u\!\restriction_{\mathcal{M}_\mu^{\operatorname{ss}}}) 719 = \sum_i 720 \operatorname{Tr}(u\!\restriction_{(\mathcal{M}_{\mu i + 1})_\mu}) 721 - \operatorname{Tr}(u\!\restriction_{(\mathcal{M}_{\mu i})_\mu}) 722 = \operatorname{Tr}(u\!\restriction_{\mathcal{M}[\mu]_\mu}) 723 = \operatorname{Tr}(u\!\restriction_{\mathcal{M}_\mu}) 724 \] 725 is polynomial in \(\mu \in \mathfrak{h}^*\). 726 \end{proof} 727 728 \begin{note} 729 Although we have provided an explicit construction of 730 \(\mathcal{M}^{\operatorname{ss}}\) in terms of \(\mathcal{M}\), we should 731 point out this construction is not functorial. First, given a 732 \(\mathfrak{g}\)-homomorphism \(f : \mathcal{M} \to \mathcal{N}\) between 733 coherent families, it is unclear what \(f^{\operatorname{ss}} : 734 \mathcal{M}^{\operatorname{ss}} \to \mathcal{N}^{\operatorname{ss}}\) is 735 supposed to be. Secondly, and this is more relevant, our construction depends 736 on the choice of composition series \(0 = \mathcal{M}_{\lambda 0} \subset 737 \cdots \subset \mathcal{M}_{\lambda r_\lambda} = \mathcal{M}[\lambda]\). 738 While different choices of composition series yield isomorphic results, there 739 is no canonical isomorphism. In addition, there is no canonical choice of 740 composition series. 741 \end{note} 742 743 The proof of Lemma~\ref{thm:component-coh-family-has-finite-length} is 744 extremely technical and will not be included in here. It suffices to note that, 745 as in Proposition~\ref{thm:ess-supp-is-zariski-dense}, the general case follows 746 from the case where \(\mathfrak{g}\) is simple, which may be found in 747 \cite{mathieu} -- see Lemma 3.3. As promised, if \(\mathcal{M}\) is a coherent 748 extension of \(M\) then so is \(\mathcal{M}^{\operatorname{ss}}\). 749 750 \begin{proposition} 751 Let \(M\) be a simple bounded \(\mathfrak{g}\)-module and \(\mathcal{M}\) 752 be a coherent extension of \(M\). Then \(\mathcal{M}^{\operatorname{ss}}\) is 753 a coherent extension of \(M\), and \(M\) is in fact a submodule of 754 \(\mathcal{M}^{\operatorname{ss}}\). 755 \end{proposition} 756 757 \begin{proof} 758 Since \(M\) is simple, its support is contained in a single \(Q\)-coset. 759 This implies that \(M\) is a subquotient of \(\mathcal{M}[\lambda]\) for any 760 \(\lambda \in \operatorname{supp} M\). If we fix some composition series \(0 761 = \mathcal{M}_0 \subset \mathcal{M}_1 \subset \cdots \subset \mathcal{M}_r = 762 \mathcal{M}[\lambda]\) of \(\mathcal{M}[\lambda]\) with \(M \cong 763 \mfrac{\mathcal{M}_{i + 1}}{\mathcal{M}_i}\), there is a natural inclusion 764 \[ 765 M 766 \isoto \mfrac{\mathcal{M}_{i + 1}}{\mathcal{M}_i} 767 \to \bigoplus_j \mfrac{\mathcal{M}_{j + 1}}{\mathcal{M}_j} 768 \cong \mathcal{M}^{\operatorname{ss}}[\lambda] 769 \] 770 \end{proof} 771 772 Given the uniqueness of the semisimplification, the semisimplification of any 773 semisimple coherent extension \(\mathcal{M}\) is \(\mathcal{M}\) 774 itself and therefore\dots 775 776 \begin{corollary}\label{thm:bounded-is-submod-of-extension} 777 Let \(M\) be a simple bounded \(\mathfrak{g}\)-module and \(\mathcal{M}\) 778 be a semisimple coherent extension of \(M\). Then \(M\) is 779 contained in \(\mathcal{M}\). 780 \end{corollary} 781 782 These last results provide a partial answer to the question of existence of 783 well behaved coherent extensions. As for the uniqueness \(\mathcal{M}\) in 784 Corollary~\ref{thm:bounded-is-submod-of-extension}, it suffices to show that 785 the multiplicities of the simple weight \(\mathfrak{g}\)-modules in 786 \(\mathcal{M}\) are uniquely determined by \(M\). These multiplicities may be 787 computed via the following lemma. 788 789 \begin{lemma}\label{thm:centralizer-multiplicity} 790 Let \(M\) be a semisimple weight \(\mathfrak{g}\)-module. Then \(M_\lambda\) 791 is a semisimple \(\mathcal{U}(\mathfrak{g})_0\)-module for any \(\lambda \in 792 \operatorname{supp} M\). Moreover, if \(L\) is a simple weight 793 \(\mathfrak{g}\)-module such that \(\lambda \in \operatorname{supp} L\) then 794 \(L_\lambda\) is a simple \(\mathcal{U}(\mathfrak{g})_0\)-module and the 795 multiplicity \(L\) in \(M\) coincides with the multiplicity of \(L_\lambda\) 796 in \(M_\lambda\) as a \(\mathcal{U}(\mathfrak{g})_0\)-module. 797 \end{lemma} 798 799 \begin{proof} 800 We begin by showing that \(L_\lambda\) is simple. Let \(N \subset L_\lambda\) 801 be a nontrivial \(\mathcal{U}(\mathfrak{g})_0\)-submodule. We want to 802 establish that \(N = L_\lambda\). 803 804 If \(\mathcal{U}(\mathfrak{g})_\alpha\) denotes the root space of \(\alpha\) 805 in \(\mathcal{U}(\mathfrak{g})\) under the adjoint action of \(\mathfrak{g}\) 806 as in Example~\ref{ex:adjoint-action-in-universal-enveloping-is-weight}, 807 \(\alpha \in Q\), a simple calculation shows 808 \(\mathcal{U}(\mathfrak{g})_\alpha \cdot N \subset L_{\lambda + \alpha}\). 809 Since \(L\) is simple and \(N\) is nonzero, it follows from 810 Example~\ref{ex:adjoint-action-in-universal-enveloping-is-weight} that 811 \[ 812 L 813 = \mathcal{U}(\mathfrak{g}) \cdot N 814 = \bigoplus_{\alpha \in Q} \mathcal{U}(\mathfrak{g})_\alpha \cdot N 815 \] 816 and thus \(L_{\lambda + \alpha} = \mathcal{U}(\mathfrak{g})_\alpha \cdot N\). 817 In particular, \(L_\lambda = \mathcal{U}(\mathfrak{g})_0 \cdot N \subset N\) 818 and \(N = L_\lambda\). 819 820 Now given a semisimple weight \(\mathfrak{g}\)-module \(M = \bigoplus_i M_i\) 821 with \(M_i\) simple, it is clear \(M_\lambda = \bigoplus_i (M_i)_\lambda\). 822 Each \((M_i)_\lambda\) is either \(0\) or a simple 823 \(\mathcal{U}(\mathfrak{g})_0\)-module, so that \(M_\lambda\) is a semisimple 824 \(\mathcal{U}(\mathfrak{g})_0\)-module. In addition, to see that the 825 multiplicity of \(L\) in \(M\) coincides with the multiplicity of 826 \(L_\lambda\) in \(M_\lambda\) it suffices to show that if \((M_i)_\lambda 827 \cong (M_j)_\lambda\) are both nonzero then \(M_i \cong M_j\). 828 829 If \(I(M_i) = \mathcal{U}(\mathfrak{g}) \otimes_{\mathcal{U}(\mathfrak{g})_0} 830 (M_i)_\lambda\), the inclusion of \(\mathcal{U}(\mathfrak{g})_0\)-modules 831 \((M_i)_\lambda \to M_i\) induces a \(\mathfrak{g}\)-homomorphism 832 \begin{align*} 833 I(M_i) & \to M_i \\ 834 u \otimes m & \mapsto u \cdot m 835 \end{align*} 836 837 Since \(M_i\) is simple and \(\lambda \in \operatorname{supp} M_i\), \(M_i = 838 \mathcal{U}(\mathfrak{g}) \cdot (M_i)_\lambda\). The homomorphism \(I(M_i) 839 \to M_i\) is thus surjective. Similarly, if \(I(M_j) = 840 \mathcal{U}(\mathfrak{g}) \otimes_{\mathcal{U}(\mathfrak{g})_0} 841 (M_j)_\lambda\) then there is a natural surjective 842 \(\mathfrak{g}\)-homomorphism \(I(M_j) \to M_j\). Now suppose there is an 843 isomorphism of \(\mathcal{U}(\mathfrak{g})_0\)-modules \(f: (M_i)_\lambda 844 \isoto (M_j)_\lambda\). Such an isomorphism induces an isomorphism of 845 \(\mathfrak{g}\)-modules 846 \begin{align*} 847 \tilde f : I(M_i) & \isoto I(M_j) \\ 848 u \otimes m & \mapsto u \otimes f(m) 849 \end{align*} 850 851 By composing \(\tilde f\) with the projection \(I(M_j) \to M_j\) we get a 852 surjective homomorphism \(I(M_i) \to M_j\). We claim \(\ker (I(M_i) \to M_i) 853 = \ker (I(M_i) \to M_j)\). To see this, notice that \(\ker(I(M_i) \to M_i)\) 854 coincides with the largest submodule \(Z(M_i) \subset I(M_i)\) contained in 855 \(\bigoplus_{\alpha \ne 0} \mathcal{U}(\mathfrak{g})_\alpha 856 \otimes_{\mathcal{U}(\mathfrak{g})_0} (M_i)_\lambda\). Indeed, a simple 857 computation shows \(\ker (I(M_i) \to M_i) \cap (\mathcal{U}(\mathfrak{g})_0 858 \otimes_{\mathcal{U}(\mathfrak{g})_0} (M_i)_\lambda) = 0\), which implies 859 \(\ker(I(M_i) \to M_i) \subset Z(M_i)\). Since \(M_i\) is simple, \(\ker 860 (I(M_i) \to M_i)\) is maximal and thus \(\ker(I(M_i) \to M_i) = Z(M_i)\). By 861 the same token, \(\ker (I(M_j) \to M_j)\) is the largest submodule of 862 \(I(M_j)\) contained in \(\bigoplus_{\alpha \ne 0} 863 \mathcal{U}(\mathfrak{g})_\alpha \otimes_{\mathcal{U}(\mathfrak{g})_0} 864 (M_j)_\lambda\) and therefore \(\ker(I(M_i) \to M_i) = 865 \tilde{f}^{-1}(\ker(I(M_j) \to M_j)) = \ker(I(M_i) \to M_j)\). 866 867 Hence there is an isomorphism \(\mfrac{I(M_i)}{\ker(I(M_i) \to M_i)} \isoto 868 M_j\) satisfying 869 \begin{center} 870 \begin{tikzcd} 871 I(M_i) \rar{\tilde f} \dar & I(M_j) \dar \\ 872 \mfrac{I(M_i)}{\ker(I(M_i) \to M_i)} \rar{\sim} & M_j 873 \end{tikzcd} 874 \end{center} 875 and finally \(M_i \cong \mfrac{I(M_i)}{\ker(I(M_i) \to M_i)} \cong M_j\). 876 \end{proof} 877 878 A complementary question now is: which submodules of a \emph{nice} coherent 879 family are cuspidal? 880 881 \begin{proposition}[Mathieu] 882 Let \(\mathcal{M}\) be an irreducible coherent family of degree \(d\) and 883 \(\lambda \in \mathfrak{h}^*\). The following conditions are equivalent. 884 \begin{enumerate} 885 \item \(\mathcal{M}[\lambda]\) is simple. 886 \item \(F_\alpha\!\restriction_{\mathcal{M}[\lambda]}\) is injective for 887 all \(\alpha \in \Delta\). 888 \item \(\mathcal{M}[\lambda]\) is cuspidal. 889 \end{enumerate} 890 \end{proposition} 891 892 \begin{proof} 893 The fact that \strong{(i)} and \strong{(iii)} are equivalent follows directly 894 from Corollary~\ref{thm:cuspidal-mod-equivs}. Likewise, it is clear from the 895 corollary that \strong{(iii)} implies \strong{(ii)}. All it is left is to 896 show \strong{(ii)} implies \strong{(iii)}. This isn't already clear from 897 Corollary~\ref{thm:cuspidal-mod-equivs} because, at first glance, 898 $\mathcal{M}[\lambda]$ may not be simple for some $\lambda$ satisfying 899 \strong{(ii)}. We will show this is never the case. 900 901 Suppose \(F_\alpha\) acts injectively on the submodule 902 \(\mathcal{M}[\lambda]\), for all \(\alpha \in \Delta\). Since 903 \(\mathcal{M}[\lambda]\) has finite length, \(\mathcal{M}[\lambda]\) contains 904 an infinite-dimensional simple \(\mathfrak{g}\)-submodule \(M\). Moreover, 905 again by Corollary~\ref{thm:cuspidal-mod-equivs} we conclude \(M\) is a 906 cuspidal module, and its degree is bounded by \(d\). We want to show 907 \(\mathcal{M}[\lambda] = M\). 908 909 We claim the set \(U = \{\mu \in \mathfrak{h}^* : \mathcal{M}_\mu \ \text{is 910 a simple $\mathcal{U}(\mathfrak{g})_0$-module}\}\) is Zariski-open. If we 911 suppose this is the case for a moment or two, it follows from the fact that 912 \(M\) is simple and \(\operatorname{supp}_{\operatorname{ess}} M\) is 913 Zariski-dense that \(U \cap \operatorname{supp}_{\operatorname{ess}} M\) is 914 non-empty. In other words, there is some \(\mu \in \mathfrak{h}^*\) such that 915 \(\mathcal{M}_\mu\) is a simple \(\mathcal{U}(\mathfrak{g})_0\)-module and 916 \(\dim M_\mu = \deg M\). 917 918 In particular, \(M_\mu \ne 0\), so \(M_\mu = \mathcal{M}_\mu\). Now given any 919 simple \(\mathfrak{g}\)-module \(L\), it follows from 920 Lemma~\ref{thm:centralizer-multiplicity} that the multiplicity of \(L\) 921 in \(\mathcal{M}[\lambda]\) is the same as the multiplicity \(L_\mu\) in 922 \(\mathcal{M}_\mu\) as a \(\mathcal{U}(\mathfrak{g})_0\)-module -- which is, 923 of course, \(1\) if \(L \cong M\) and \(0\) otherwise. Hence 924 \(\mathcal{M}[\lambda] = M\) and \(\mathcal{M}[\lambda]\) is cuspidal. 925 \end{proof} 926 927 To finish the proof, we now show\dots 928 929 \begin{lemma}\label{thm:set-of-simple-u0-mods-is-open} 930 Let \(\mathcal{M}\) be a coherent family. The set \(U = \{\lambda \in 931 \mathfrak{h}^* : \mathcal{M}_\lambda \ \text{is a simple 932 $\mathcal{U}(\mathfrak{g})_0$-module}\}\) is Zariski-open. 933 \end{lemma} 934 935 \begin{proof} 936 For each \(\lambda \in \mathfrak{h}^*\) we introduce the bilinear form 937 \begin{align*} 938 B_\lambda : \mathcal{U}(\mathfrak{g})_0 \times \mathcal{U}(\mathfrak{g})_0 939 & \to K \\ 940 (u, v) 941 & \mapsto \operatorname{Tr}(u v \!\restriction_{\mathcal{M}_\lambda}) 942 \end{align*} 943 and consider its rank -- i.e. the dimension of the image of the induced 944 operator 945 \begin{align*} 946 \mathcal{U}(\mathfrak{g})_0 & \to \mathcal{U}(\mathfrak{g})_0^* \\ 947 u & \mapsto B_\lambda(u, \cdot) 948 \end{align*} 949 950 Our first observation is that \(\operatorname{rank} B_\lambda \le d^2\). This 951 follows from the commutativity of 952 \begin{center} 953 \begin{tikzcd} 954 \mathcal{U}(\mathfrak{g})_0 \rar \dar & 955 \mathcal{U}(\mathfrak{g})_0^* \\ 956 \operatorname{End}(\mathcal{M}_\lambda) \rar{\sim} & 957 \operatorname{End}(\mathcal{M}_\lambda)^* \uar 958 \end{tikzcd}, 959 \end{center} 960 where the map \(\mathcal{U}(\mathfrak{g})_0 \to 961 \operatorname{End}(\mathcal{M}_\lambda)\) is given by the action of 962 \(\mathcal{U}(\mathfrak{g})_0\), the map 963 \(\operatorname{End}(\mathcal{M}_\lambda)^* \to 964 \mathcal{U}(\mathfrak{g})_0^*\) is its dual, and the isomorphism 965 \(\operatorname{End}(\mathcal{M}_\lambda) \isoto 966 \operatorname{End}(\mathcal{M}_\lambda)^*\) is induced by the trace form 967 \begin{align*} 968 \operatorname{End}(\mathcal{M}_\lambda) \times 969 \operatorname{End}(\mathcal{M}_\lambda) & \to K \\ 970 (T, S) & \mapsto \operatorname{Tr}(T S) 971 \end{align*} 972 973 Indeed, \(\operatorname{rank} B_\lambda \le 974 \operatorname{rank}(\mathcal{U}(\mathfrak{g})_0 \to 975 \operatorname{End}(\mathcal{M}_\lambda)) \le \dim 976 \operatorname{End}(\mathcal{M}_\lambda) = d^2\). Furthermore, if 977 \(\operatorname{rank} B_\lambda = d^2\) then we must have 978 \(\operatorname{rank}(\mathcal{U}(\mathfrak{g})_0 \to 979 \operatorname{End}(\mathcal{M}_\lambda)) = d^2\) -- i.e. the map 980 \(\mathcal{U}(\mathfrak{g})_0 \to \operatorname{End}(\mathcal{M}_\lambda)\) 981 is surjective. In particular, if \(\operatorname{rank} B_\lambda = d^2\) then 982 \(\mathcal{M}_\lambda\) is a simple \(\mathcal{U}(\mathfrak{g})_0\)-module, 983 for if \(M \subset \mathcal{M}_\lambda\) is invariant under the action of 984 \(\mathcal{U}(\mathfrak{g})_0\) then \(M\) is invariant under any 985 \(K\)-linear operator \(\mathcal{M}_\lambda \to \mathcal{M}_\lambda\), so 986 that \(M = 0\) or \(M = \mathcal{M}_\lambda\). 987 988 On the other hand, if \(\mathcal{M}_\lambda\) is simple then by Burnside's 989 Theorem on matrix algebras the map \(\mathcal{U}(\mathfrak{g})_0 \to 990 \operatorname{End}(\mathcal{M}_\lambda)\) is surjective. Hence the 991 commutativity of the previously drawn diagram, as well as the fact that 992 \(\operatorname{rank}(\mathcal{U}(\mathfrak{g})_0 \to 993 \operatorname{End}(\mathcal{M}_\lambda)) = 994 \operatorname{rank}(\operatorname{End}(\mathcal{M}_\lambda)^* \to 995 \mathcal{U}(\mathfrak{g})_0^*)\), imply that \(\operatorname{rank} B_\lambda 996 = d^2\). This goes to show that \(U\) is precisely the set of all \(\lambda\) 997 such that \(B_\lambda\) has maximal rank \(d^2\). We now show that \(U\) is 998 Zariski-open. First, notice that 999 \[ 1000 U = 1001 \bigcup_{\substack{V \subset \mathcal{U}(\mathfrak{g})_0 \\ \dim V = d}} 1002 U_V, 1003 \] 1004 where \(U_V = \{\lambda \in \mathfrak{h}^* : \operatorname{rank} 1005 B_\lambda\!\restriction_V = d^2 \}\). Here \(V\) ranges over all 1006 \(d\)-dimensional subspaces of \(\mathcal{U}(\mathfrak{g})_0\) -- \(V\) is 1007 not necessarily a \(\mathcal{U}(\mathfrak{g})_0\)-submodule. 1008 1009 Indeed, if \(\operatorname{rank} B_\lambda = d^2\) it follows from the 1010 subjectivity of the map \(\mathcal{U}(\mathfrak{g})_0 \to 1011 \operatorname{End}(\mathcal{M}_\lambda)\) that there is some \(V \subset 1012 \mathcal{U}(\mathfrak{g})_0\) with \(\dim V = d\) such that the restriction 1013 \(V \to \operatorname{End}(\mathcal{M}_\lambda)\) is surjective. The 1014 commutativity of 1015 \begin{center} 1016 \begin{tikzcd} 1017 V \rar \dar & V^* \\ 1018 \operatorname{End}(\mathcal{M}_\lambda) \rar{\sim} & 1019 \operatorname{End}(\mathcal{M}_\lambda)^* \uar 1020 \end{tikzcd} 1021 \end{center} 1022 then implies \(\operatorname{rank} B_\lambda\!\restriction_V = d^2\). In 1023 other words, \(U \subset \bigcup_V U_V\). 1024 1025 Likewise, if \(\operatorname{rank} B_\lambda\!\restriction_V = d^2\) for some 1026 \(V\), then the commutativity of 1027 \begin{center} 1028 \begin{tikzcd} 1029 V \rar \dar & V^* \\ 1030 \mathcal{U}(\mathfrak{g})_0 \rar & 1031 \mathcal{U}(\mathfrak{g})_0^* \uar 1032 \end{tikzcd} 1033 \end{center} 1034 implies \(\operatorname{rank} B_\lambda \ge d^2\), which goes to show 1035 \(\bigcup_V U_V \subset U\). 1036 1037 Given \(\lambda \in U_V\), the surjectivity of \(V \to 1038 \operatorname{End}(\mathcal{M}_\lambda)\) and the fact that \(\dim V < 1039 \infty\) imply \(V \to V^*\) is invertible. Since \(\mathcal{M}\) is a 1040 coherent family, \(B_\lambda\) depends polynomially in \(\lambda\). Hence so 1041 does the induced maps \(V \to V^*\). In particular, there is some Zariski 1042 neighborhood \(U'\) of \(\lambda\) such that the map \(V \to V^*\) induced by 1043 \(B_\mu\!\restriction_V\) is invertible for all \(\mu \in U'\). 1044 1045 But the surjectivity of the map induced by \(B_\mu\!\restriction_V\) implies 1046 \(\operatorname{rank} B_\mu = d^2\), so \(\mu \in U_V\) and therefore \(U' 1047 \subset U_V\). This implies \(U_V\) is open for all \(V\). Finally, \(U\) is 1048 the union of Zariski-open subsets and is therefore open. We are done. 1049 \end{proof} 1050 1051 The major remaining question for us to tackle is that of the existence of 1052 coherent extensions, which will be the focus of our next section. 1053 1054 \section{Localizations \& the Existence of Coherent Extensions} 1055 1056 Let \(M\) be a simple bounded \(\mathfrak{g}\)-module of degree \(d\). Our 1057 goal is to prove that \(M\) has a (unique) irreducible semisimple coherent 1058 extension \(\mathcal{M}\). Since \(M\) is simple, we know \(M \subset 1059 \mathcal{M}[\lambda]\) for any \(\lambda \in \operatorname{supp} M\). Our first 1060 task is constructing \(\mathcal{M}[\lambda]\). The issue here is that 1061 \(\operatorname{supp}_{\operatorname{ess}} M\) may not be all of \(\lambda + Q 1062 = \operatorname{supp}_{\operatorname{ess}} \mathcal{M}[\lambda]\), so we may 1063 find \(M \subsetneq \mathcal{M}[\lambda]\). In fact, we may find 1064 \(\operatorname{supp} M \subsetneq \lambda + Q\). 1065 1066 This wasn't an issue an Example~\ref{ex:laurent-polynomial-mod} because we 1067 verified that the action of \(f \in \mathfrak{sl}_2(K)\) on \(K[x, x^{-1}]\) is 1068 injective. Since all weight spaces of \(K[x, x^{-1}]\) are \(1\)-dimensional, 1069 this implies the action of \(f\) is actually bijective, so we can obtain a 1070 nonzero vector in \(K[x, x^{-1}]_{2 k} = K x^k\) for any \(k \in \mathbb{Z}\) 1071 by translating between weight spaced using \(f\) and \(f^{-1}\) -- here 1072 \(f^{-1}\) denotes the \(K\)-linear operator \((- 1073 \sfrac{\mathrm{d}}{\mathrm{d}x} + \sfrac{x^{-1}}{2})^{-1}\), which is the 1074 inverse of the action of \(f\) on \(K[x, x^{-1}]\). 1075 \begin{center} 1076 \begin{tikzcd} 1077 \cdots \rar[bend left=60]{f^{-1}} 1078 & K x^{-2} \rar[bend left=60]{f^{-1}} \lar[bend left=60]{f} 1079 & K x^{-1} \rar[bend left=60]{f^{-1}} \lar[bend left=60]{f} 1080 & K \rar[bend left=60]{f^{-1}} \lar[bend left=60]{f} 1081 & K x \rar[bend left=60]{f^{-1}} \lar[bend left=60]{f} 1082 & K x^2 \rar[bend left=60]{f^{-1}} \lar[bend left=60]{f} 1083 & \cdots \lar[bend left=60]{f} 1084 \end{tikzcd} 1085 \end{center} 1086 1087 In the general case, the action of some \(F_\alpha \in \mathfrak{g}\) with 1088 \(\alpha \in \Delta\) in \(M\) may not be injective. In fact, we have seen that 1089 the action of \(F_\alpha\) is injective for all \(\alpha \in \Delta^+\) if, and 1090 only if \(M\) is cuspidal. Nevertheless, we could intuitively \emph{make it 1091 injective} by formally inverting the elements \(F_\alpha \in 1092 \mathcal{U}(\mathfrak{g})\). This would allow us to obtain nonzero vectors in 1093 \(M_\mu\) for all \(\mu \in \lambda + Q\) by successively applying elements of 1094 \(\{F_\alpha^{\pm 1}\}_{\alpha \in \Delta}\) to a nonzero weight vector \(m \in 1095 M_\lambda\). Moreover, if the actions of the \(F_\alpha\) were to be 1096 invertible, we would find that all \(M_\mu\) are \(d\)-dimensional for \(\mu 1097 \in \lambda + Q\). 1098 1099 In a commutative domain, this can be achieved by tensoring our module by the 1100 field of fractions. However, \(\mathcal{U}(\mathfrak{g})\) is hardly ever 1101 commutative -- \(\mathcal{U}(\mathfrak{g})\) is commutative if, and only if 1102 \(\mathfrak{g}\) is Abelian -- and the situation is more delicate in the 1103 non-commutative case. For starters, a non-commutative \(K\)-algebra \(A\) may 1104 not even have a ``field of fractions'' -- i.e. an over-ring where all elements 1105 of \(A\) have inverses. Nevertheless, it is possible to formally invert 1106 elements of certain subsets of \(A\) via a process known as 1107 \emph{localization}, which we now describe. 1108 1109 \begin{definition}\index{localization!multiplicative subsets}\index{localization!Ore's condition} 1110 Let \(A\) be a \(K\)-algebra. A subset \(S \subset A\) is called 1111 \emph{multiplicative} if \(s \cdot t \in S\) for all \(s, t \in S\) and \(0 1112 \notin S\). A multiplicative subset \(S\) is said to satisfy \emph{Ore's 1113 localization condition} if for each \(a \in A\) and \(s \in S\) there exists 1114 \(b, c \in A\) and \(t, t' \in S\) such that \(s a = b t\) and \(a s = t' 1115 c\). 1116 \end{definition} 1117 1118 \begin{theorem}[Ore-Asano]\index{localization!Ore-Asano Theorem} 1119 Let \(S \subset A\) be a multiplicative subset satisfying Ore's localization 1120 condition. Then there exists a (unique) \(K\)-algebra \(S^{-1} A\), with a 1121 canonical algebra homomorphism \(A \to S^{-1} A\), enjoying the universal 1122 property that each algebra homomorphism \(f : A \to B\) such that \(f(s)\) is 1123 invertible for all \(s \in S\) can be uniquely extended to an algebra 1124 homomorphism \(S^{-1} A \to B\). \(S^{-1} A\) is called \emph{the 1125 localization of \(A\) by \(S\)}, and the map \(A \to S^{-1} A\) is called 1126 \emph{the localization map}. 1127 \begin{center} 1128 \begin{tikzcd} 1129 A \dar \rar{f} & B \\ 1130 S^{-1} A \urar[swap, dotted] & 1131 \end{tikzcd} 1132 \end{center} 1133 \end{theorem} 1134 1135 If we identify an element with its image under the localization map, it follows 1136 directly from Ore's construction that every element of \(S^{-1} A\) has the 1137 form \(s^{-1} a\) for some \(s \in S\) and \(a \in A\). Likewise, any element 1138 of \(S^{-1} A\) can also be written as \(b t^{-1}\) for some \(t \in S\), \(b 1139 \in A\). 1140 1141 Ore's localization condition may seem a bit arbitrary at first, but a more 1142 thorough investigation reveals the intuition behind it. The issue in question 1143 here is that in the non-commutative case we can no longer take the existence of 1144 common denominators for granted. However, the existence of common denominators 1145 is fundamental to the proof of the fact the field of fractions is a ring -- it 1146 is used, for example, to define the sum of two elements in the field of 1147 fractions. We thus need to impose their existence for us to have any hope of 1148 defining consistent arithmetics in the localization of an algebra, and Ore's 1149 condition is actually equivalent to the existence of common denominators -- 1150 see the discussion in the introduction of \cite[ch.~6]{goodearl-warfield} for 1151 further details. 1152 1153 We should also point out that there are numerous other conditions -- which may 1154 be easier to check than Ore's -- known to imply Ore's condition. For 1155 instance\dots 1156 1157 \begin{lemma} 1158 Let \(S \subset A\) be a multiplicative subset generated by finitely many 1159 locally \(\operatorname{ad}\)-nilpotent elements -- i.e. elements \(s \in S\) 1160 such that for each \(a \in A\) there exists \(r > 0\) such that 1161 \(\operatorname{ad}(s)^r a = [s, [s, \cdots [s, a]]\cdots] = 0\). Then \(S\) 1162 satisfies Ore's localization condition. 1163 \end{lemma} 1164 1165 In our case, we are more interested in formally inverting the action of 1166 \(F_\alpha\) on \(M\) than in inverting \(F_\alpha\) itself. To that end, we 1167 introduce one further construction, known as \emph{the localization of a 1168 module}. 1169 1170 \begin{definition}\index{localization!localization of modules} 1171 Let \(S \subset A\) be a multiplicative subset satisfying Ore's localization 1172 condition and \(M\) be an \(A\)-module. The \(S^{-1} A\)-module \(S^{-1} M = 1173 S^{-1} A \otimes_A M\) is called \emph{the localization of \(M\) by \(S\)}, 1174 and the homomorphism of \(A\)-modules 1175 \begin{align*} 1176 M & \to S^{-1} M \\ 1177 m & \mapsto 1 \otimes m 1178 \end{align*} 1179 is called \emph{the localization map of \(M\)}. 1180 \end{definition} 1181 1182 Notice that the \(S^{-1} A\)-module \(S^{-1} M\) has the natural structure of 1183 an \(A\)-module, where the action of \(A\) is given by the localization map \(A 1184 \to S^{-1} A\). 1185 1186 It is interesting to observe that, unlike in the case of the field of fractions 1187 of a commutative domain, in general the localization map \(A \to S^{-1} A\) -- 1188 i.e. the map \(a \mapsto \frac{a}{1}\) -- may not be injective. For instance, 1189 if \(S\) contains a divisor of zero \(s\), its image under the localization map 1190 is invertible and therefore cannot be a divisor of zero in \(S^{-1} A\). In 1191 particular, if \(a \in A\) is nonzero and such that \(s a = 0\) or \(a s = 0\) 1192 then its image under the localization map has to be \(0\). However, the 1193 existence of divisors of zero in \(S\) turns out to be the only obstruction to 1194 the injectivity of the localization map, as shown in\dots 1195 1196 \begin{lemma} 1197 Let \(S \subset A\) be a multiplicative subset satisfying Ore's localization 1198 condition and \(M\) be an \(A\)-module. If \(S\) acts injectively on \(M\) 1199 then the localization map \(M \to S^{-1} M\) is injective. In particular, if 1200 \(S\) has no zero divisors then \(A\) is a subalgebra of \(S^{-1} A\). 1201 \end{lemma} 1202 1203 Again, in our case we are interested in inverting the actions of the 1204 \(F_\alpha\) on \(M\). However, for us to be able to translate between all 1205 weight spaces associated with elements of \(\lambda + Q\), \(\lambda \in 1206 \operatorname{supp} M\), we only need to invert the \(F_\alpha\)'s for 1207 \(\alpha\) in some subset of \(\Delta\) which spans all of \(Q = \mathbb{Z} 1208 \Delta\). In other words, it suffices to invert \(F_\beta\) for all \(\beta\) 1209 in some basis \(\Sigma\) for \(\Delta\). We can choose such a basis to be 1210 well-behaved. For example, we can show\dots 1211 1212 \begin{lemma}\label{thm:nice-basis-for-inversion} 1213 Let \(M\) be a simple infinite-dimensional bounded \(\mathfrak{g}\)-module. 1214 There is a basis \(\Sigma = \{\beta_1, \ldots, \beta_r\}\) for \(\Delta\) 1215 such that the elements \(F_{\beta_i}\) all act injectively on \(M\) and 1216 satisfy \([F_{\beta_i}, F_{\beta_j}] = 0\). 1217 \end{lemma} 1218 1219 \begin{note} 1220 The basis \(\Sigma\) in Lemma~\ref{thm:nice-basis-for-inversion} may very 1221 well depend on the representation \(M\)! This is another obstruction to the 1222 functoriality of our constructions. 1223 \end{note} 1224 1225 The proof of the previous Lemma is quite technical and was deemed too tedious 1226 to be included in here. See Lemma 4.4 of \cite{mathieu} for a full proof. Since 1227 \(F_\alpha\) is locally \(\operatorname{ad}\)-nilpotent for all \(\alpha \in 1228 \Delta\), we can see\dots 1229 1230 \begin{corollary} 1231 Let \(\Sigma\) be as in Lemma~\ref{thm:nice-basis-for-inversion} and 1232 \((F_\beta)_{\beta \in \Sigma} \subset \mathcal{U}(\mathfrak{g})\) be the 1233 multiplicative subset generated by the \(F_\beta\)'s. The \(K\)-algebra 1234 \(\Sigma^{-1} \mathcal{U}(\mathfrak{g}) = (F_\beta)_{\beta \in \Sigma}^{-1} 1235 \mathcal{U}(\mathfrak{g})\) is well defined. Moreover, if we denote by 1236 \(\Sigma^{-1} M\) the localization of \(M\) by \((F_\beta)_{\beta \in 1237 \Sigma}\), the localization map \(M \to \Sigma^{-1} M\) is injective. 1238 \end{corollary} 1239 1240 From now on let \(\Sigma\) be some fixed basis for \(\Delta\) satisfying the 1241 hypothesis of Lemma~\ref{thm:nice-basis-for-inversion}. We now show that 1242 \(\Sigma^{-1} M\) is a weight \(\mathfrak{g}\)-module whose support is an 1243 entire \(Q\)-coset. 1244 1245 \begin{proposition}\label{thm:irr-bounded-is-contained-in-nice-mod} 1246 The restriction of the localization \(\Sigma^{-1} M\) is a bounded 1247 \(\mathfrak{g}\)-module of degree \(d\) with \(\operatorname{supp} 1248 \Sigma^{-1} M = Q + \operatorname{supp} M\) and \(\dim \Sigma^{-1} M_\lambda 1249 = d\) for all \(\lambda \in \operatorname{supp} \Sigma^{-1} M\). 1250 \end{proposition} 1251 1252 \begin{proof} 1253 Fix some \(\beta \in \Sigma\). We begin by showing that \(F_\beta\) and 1254 \(F_\beta^{-1}\) map the weight space \(\Sigma^{-1} M_\lambda\) to 1255 \(\Sigma^{-1} M_{\lambda - \beta}\) and \(\Sigma^{-1} M_{\lambda + \beta}\), 1256 respectively. Indeed, given \(m \in M_\lambda\) and \(H \in \mathfrak{h}\) we 1257 have 1258 \[ 1259 H \cdot (F_\beta \cdot m) 1260 = ([H, F_\beta] + F_\beta H) \cdot m 1261 = F_\beta (-\beta(H) + H) \cdot m 1262 = (\lambda - \beta)(H) F_\beta \cdot m 1263 \] 1264 1265 On the other hand, 1266 \[ 1267 0 1268 = [H, 1] 1269 = [H, F_\beta F_\beta^{-1}] 1270 = F_\beta [H, F_\beta^{-1}] + [H, F_\beta] F_\beta^{-1} 1271 = F_\beta [H, F_\beta^{-1}] - \beta(H) F_\beta F_\beta^{-1}, 1272 \] 1273 so that \([H, F_\beta^{-1}] = \beta(H) \cdot F_\beta^{-1}\) and therefore 1274 \[ 1275 H \cdot (F_\beta^{-1} \cdot m) 1276 = ([H, F_\beta^{-1}] + F_\beta^{-1} H) \cdot m 1277 = F_\beta^{-1} (\beta(H) + H) \cdot m 1278 = (\lambda + \beta)(H) F_\beta^{-1} \cdot m 1279 \] 1280 1281 From the fact that \(F_\beta^{\pm 1}\) maps \(M_\lambda\) to \(\Sigma^{-1} 1282 M_{\lambda \pm \beta}\) follows our first conclusion: since \(M\) is a weight 1283 module and every element of \(\Sigma^{-1} M\) has the form \(s^{-1} \cdot m = 1284 s^{-1} \otimes m\) for \(s \in (F_\beta)_{\beta \in \Sigma}\) and \(m \in 1285 M\), we can see that \(\Sigma^{-1} M = \bigoplus_\lambda \Sigma^{-1} 1286 M_\lambda\). Furthermore, since the action of each \(F_\beta\) on 1287 \(\Sigma^{-1} M\) is bijective and \(\Sigma\) is a basis for \(Q\) we obtain 1288 \(\operatorname{supp} \Sigma^{-1} M = Q + \operatorname{supp} M\). 1289 1290 Again, because of the bijectivity of the \(F_\beta\)'s, to see that \(\dim 1291 \Sigma^{-1} M_\lambda = d\) for all \(\lambda \in \operatorname{supp} 1292 \Sigma^{-1} M\) it suffices to show that \(\dim \Sigma^{-1} M_\lambda = d\) 1293 for some \(\lambda \in \operatorname{supp} \Sigma^{-1} M\). We may take 1294 \(\lambda \in \operatorname{supp} M\) with \(\dim M_\lambda = d\). For any 1295 finite-dimensional subspace \(V \subset \Sigma^{-1} M_\lambda\) we can find 1296 \(s \in (F_\beta)_{\beta \in \Sigma}\) such that \(s \cdot V \subset M\). If 1297 \(s = F_{\beta_{i_1}} \cdots F_{\beta_{i_r}}\), it is clear \(s \cdot V 1298 \subset M_{\lambda - \beta_{i_1} - \cdots - \beta_{i_r}}\), so \(\dim V = 1299 \dim s \cdot V \le d\). This holds for all finite-dimensional \(V \subset 1300 \Sigma^{-1} M_\lambda\), so \(\dim \Sigma^{-1} M_\lambda \le d\). It then 1301 follows from the fact that \(M_\lambda \subset \Sigma^{-1} M_\lambda\) that 1302 \(M_\lambda = \Sigma^{-1} M_\lambda\) and therefore \(\dim \Sigma^{-1} 1303 M_\lambda = d\). 1304 \end{proof} 1305 1306 We now have a good candidate for a coherent extension of \(M\), but 1307 \(\Sigma^{-1} M\) is still not a coherent extension since its support is 1308 contained in a single \(Q\)-coset. In particular, \(\operatorname{supp} 1309 \Sigma^{-1} M \ne \mathfrak{h}^*\) and \(\Sigma^{-1} M\) is not a coherent 1310 family. To obtain a coherent family we thus need somehow extend \(\Sigma^{-1} 1311 M\). To that end, we will attempt to replicate the construction of the coherent 1312 extension of the \(\mathfrak{sl}_2(K)\)-module \(K[x, x^{-1}]\). Specifically, 1313 the idea is that if twist \(\Sigma^{-1} M\) by an automorphism which shifts its 1314 support by some \(\lambda \in \mathfrak{h}^*\), we can construct a coherent 1315 family by summing these modules over \(\lambda\) as in 1316 Example~\ref{ex:sl-laurent-family}. 1317 1318 For \(K[x, x^{-1}]\) this was achieved by twisting the 1319 \(\operatorname{Diff}(K[x, x^{-1}])\)-module \(K[x, x^{-1}]\) by the 1320 automorphisms \(\varphi_\lambda : \operatorname{Diff}(K[x, x^{-1}]) \to 1321 \operatorname{Diff}(K[x, x^{-1}])\) and restricting the results to 1322 \(\mathcal{U}(\mathfrak{sl}_2(K))\) via the map 1323 \(\mathcal{U}(\mathfrak{sl}_2(K)) \to \operatorname{Diff}(K[x, x^{-1}])\), but 1324 this approach is inflexible since not every \(\mathfrak{sl}_2(K)\)-module 1325 factors through \(\operatorname{Diff}(K[x, x^{-1}])\). Nevertheless, we could 1326 just as well twist \(K[x, x^{-1}]\) by automorphisms of 1327 \(\mathcal{U}(\mathfrak{sl}_2(K))_f\) directly -- where 1328 \(\mathcal{U}(\mathfrak{sl}_2(K))_f = (f)^{-1} \mathcal{U}(\mathfrak{g})\) is 1329 the localization of \(\mathcal{U}(\mathfrak{sl}_2(K))\) by the multiplicative 1330 subset generated by \(f\). 1331 1332 In general, we may twist the \(\Sigma^{-1} \mathcal{U}(\mathfrak{g})\)-module 1333 \(\Sigma^{-1} M\) by automorphisms of \(\Sigma^{-1} 1334 \mathcal{U}(\mathfrak{g})\). For \(\lambda = \beta \in \Sigma\) the map 1335 \begin{align*} 1336 \theta_\beta : \Sigma^{-1} \mathcal{U}(\mathfrak{g}) & \to 1337 \Sigma^{-1} \mathcal{U}(\mathfrak{g}) \\ 1338 u & \mapsto F_\beta u F_\beta^{-1} 1339 \end{align*} 1340 is a natural candidate for such a twisting automorphism. Indeed, we will soon 1341 see that \(\twisted{(\Sigma^{-1} M)}{\theta_\beta}_\lambda = \Sigma^{-1} 1342 M_{\lambda + \beta}\). However, this is hardly useful to us, since \(\beta \in 1343 Q\) and therefore \(\beta + \operatorname{supp} \Sigma^{-1} M = 1344 \operatorname{supp} \Sigma^{-1} M\). If we want to expand the support of 1345 \(\Sigma^{-1} M\) we will have to twist by automorphisms that shift its support 1346 by \(\lambda \in \mathfrak{h}^*\) lying \emph{outside} of \(Q\). 1347 1348 The situation is much less obvious in this case. Nevertheless, it turns out we 1349 can extend the family \(\{\theta_\beta\}_{\beta \in \Sigma}\) to a family of 1350 automorphisms \(\{\theta_\lambda\}_{\lambda \in \mathfrak{h}^*}\). 1351 Explicitly\dots 1352 1353 \begin{proposition}\label{thm:nice-automorphisms-exist} 1354 There is a family of automorphisms \(\{\theta_\lambda : \Sigma^{-1} 1355 \mathcal{U}(\mathfrak{g}) \to \Sigma^{-1} 1356 \mathcal{U}(\mathfrak{g})\}_{\lambda \in \mathfrak{h}^*}\) such that 1357 \begin{enumerate} 1358 \item \(\theta_{k_1 \beta_1 + \cdots + k_r \beta_r}(u) = F_{\beta_1}^{k_1} 1359 \cdots F_{\beta_r}^{k_r} u F_{\beta_r}^{- k_r} \cdots F_{\beta_1}^{- 1360 k_1}\) for all \(u \in \Sigma^{-1} \mathcal{U}(\mathfrak{g})\) and \(k_1, 1361 \ldots, k_r \in \mathbb{Z}\). 1362 1363 \item For each \(u \in \Sigma^{-1} \mathcal{U}(\mathfrak{g})\) the map 1364 \begin{align*} 1365 \mathfrak{h}^* & \to \Sigma^{-1} \mathcal{U}(\mathfrak{g}) \\ 1366 \lambda & \mapsto \theta_\lambda(u) 1367 \end{align*} 1368 is polynomial. 1369 1370 \item If \(\lambda, \mu \in \mathfrak{h}^*\), \(N\) is a \(\Sigma^{-1} 1371 \mathcal{U}(\mathfrak{g})\)-module whose restriction to 1372 \(\mathcal{U}(\mathfrak{g})\) is a weight \(\mathfrak{g}\)-module and 1373 \(\twisted{N}{\theta_\lambda}\) is the \(\Sigma^{-1} 1374 \mathcal{U}(\mathfrak{g})\)-module \(N\) twisted by the automorphism 1375 \(\theta_\lambda\) then \(N_\mu = \twisted{N}{\theta_\lambda}_{\mu + 1376 \lambda}\). In particular, \(\operatorname{supp} 1377 \twisted{N}{\theta_\lambda} = \lambda + \operatorname{supp} N\). 1378 \end{enumerate} 1379 \end{proposition} 1380 1381 \begin{proof} 1382 Since the elements \(F_\beta\), \(\beta \in \Sigma\) commute with one 1383 another, the endomorphisms 1384 \begin{align*} 1385 \theta_{k_1 \beta_1 + \cdots + k_r \beta_r} 1386 : \Sigma^{-1} \mathcal{U}(\mathfrak{g}) & 1387 \to \Sigma^{-1} \mathcal{U}(\mathfrak{g}) \\ 1388 u & \mapsto 1389 F_{\beta_1}^{k_1} \cdots F_{\beta_r}^{k_r} 1390 u 1391 F_{\beta_1}^{- k_r} \cdots F_{\beta_r}^{- k_1} 1392 \end{align*} 1393 are well defined for all \(k_1, \ldots, k_r \in \mathbb{Z}\). 1394 1395 Fix some \(u \in \Sigma^{-1} \mathcal{U}(\mathfrak{g})\). For any \(s \in 1396 (F_\beta)_{\beta \in \Sigma}\) and \(k > 0\) we have \(s^k u = \binom{k}{0} 1397 \operatorname{ad}(s)^0 u s^{k - 0} + \cdots + \binom{k}{k} 1398 \operatorname{ad}(s)^k u s^{k - k}\). Now if we take \(\ell\) such 1399 \(\operatorname{ad}(F_\beta)^{\ell + 1} u = 0\) for all \(\beta \in \Sigma\) 1400 we find 1401 \[ 1402 \theta_{k_1 \beta_1 + \cdots + k_r \beta_r}(u) 1403 = \sum_{i_1, \ldots, i_r = 1, \ldots, \ell} 1404 \binom{k_1}{i_1} \cdots \binom{k_r}{i_r} 1405 \operatorname{ad}(F_{\beta_1})^{i_1} \cdots 1406 \operatorname{ad}(F_{\beta_r})^{i_r} 1407 u 1408 F_{\beta_1}^{- i_1} \cdots F_{\beta_r}^{- i_r} 1409 \] 1410 for all \(k_1, \ldots, k_r \in \mathbb{N}\). 1411 1412 Since the binomial coefficients \(\binom{x}{k} = \frac{x (x-1) \cdots (x - k 1413 + 1)}{k!}\) can be uniquely extended to polynomial functions in \(x \in K\), 1414 we may in general define 1415 \[ 1416 \theta_\lambda(u) 1417 = \sum_{i_1, \ldots, i_r \ge 0} 1418 \binom{\lambda_1}{i_1} \cdots \binom{\lambda_r}{i_r} 1419 \operatorname{ad}(F_{\beta_1})^{i_1} \cdots 1420 \operatorname{ad}(F_{\beta_r})^{i_r} 1421 r 1422 F_{\beta_1}^{- i_1} \cdots F_{\beta_r}^{- i_r} 1423 \] 1424 for \(\lambda_1, \ldots, \lambda_r \in K\), \(\lambda = \lambda_1 \beta_1 + 1425 \cdots + \lambda_r \beta_r \in \mathfrak{h}^*\). 1426 1427 It is clear that the \(\theta_\lambda\) are endomorphisms. To see that the 1428 \(\theta_\lambda\) are indeed automorphisms, notice \(\theta_{- k_1 \beta_1 - 1429 \cdots - k_r \beta_r} = \theta_{k_1 \beta_1 + \cdots + k_r \beta_r}^{-1}\). 1430 The uniqueness of the polynomial extensions then implies \(\theta_{- \lambda} 1431 = \theta_\lambda^{-1}\) in general: given \(u \in \Sigma^{-1} 1432 \mathcal{U}(\mathfrak{g})\), the map 1433 \begin{align*} 1434 \mathfrak{h}^* & \to \Sigma^{-1} \mathcal{U}(\mathfrak{g}) \\ 1435 \lambda & \mapsto \theta_\lambda(\theta_{-\lambda}(u)) - u 1436 \end{align*} 1437 is a polynomial extension of the zero map \(\mathbb{Z} \beta_1 \oplus \cdots 1438 \oplus \mathbb{Z} \beta_r \to \Sigma^{-1} \mathcal{U}(\mathfrak{g})\) and is 1439 therefore identically zero. 1440 1441 Finally, let \(N\) be a \(\Sigma^{-1} \mathcal{U}(\mathfrak{g})\)-module 1442 whose restriction is a weight module. If \(n \in N\) then 1443 \[ 1444 n \in \twisted{N}{\theta_\lambda}_{\mu + \lambda} 1445 \iff \theta_\lambda(H) \cdot n = (\mu + \lambda)(H) n 1446 \, \forall H \in \mathfrak{h} 1447 \] 1448 1449 But 1450 \[ 1451 \theta_\beta(H) 1452 = F_\beta H F_\beta^{-1} 1453 = ([F_\beta, H] + H F_\beta) F_\beta^{-1} 1454 = (\beta(H) + H) F_\beta F_\beta^{-1} 1455 = \beta(H) + H 1456 \] 1457 for all \(H \in \mathfrak{h}\) and \(\beta \in \Sigma\). In general, 1458 \(\theta_\lambda(H) = \lambda(H) + H\) for all \(\lambda \in \mathfrak{h}^*\) 1459 and hence 1460 \[ 1461 \begin{split} 1462 n \in \twisted{N}{\theta_\lambda}_{\mu + \lambda} 1463 & \iff (\lambda(H) + H) \cdot n = (\mu + \lambda)(H) n 1464 \; \forall H \in \mathfrak{h} \\ 1465 & \iff H \cdot n = \mu(H) n \; \forall H \in \mathfrak{h} \\ 1466 & \iff n \in N_\mu 1467 \end{split}, 1468 \] 1469 so that \(\twisted{N}{\theta_\lambda}_{\mu + \lambda} = N_\mu\). 1470 \end{proof} 1471 1472 It should now be obvious\dots 1473 1474 \begin{proposition}[Mathieu]\label{thm:coh-ext-exists} 1475 There exists a coherent extension \(\mathcal{M}\) of \(M\). 1476 \end{proposition} 1477 1478 \begin{proof} 1479 Take\footnote{Here we fix some $\lambda_\xi \in \xi$ for each $Q$-coset $\xi 1480 \in \mfrac{\mathfrak{h}^*}{Q}$. While there is a natural isomorphism 1481 $\twisted{(\Sigma^{-1} M)}{\theta_\lambda} \isoto \twisted{(\Sigma^{-1} 1482 M)}{\theta_\mu}$ for each $\mu \in \lambda + Q$, they are not the same 1483 \(\mathfrak{g}\)-modules strictly speaking. This is yet another obstruction 1484 to the functoriality of our constructions.} 1485 \[ 1486 \mathcal{M} 1487 = \bigoplus_{\lambda + Q \in \mfrac{\mathfrak{h}^*}{Q}} 1488 \twisted{(\Sigma^{-1} M)}{\theta_\lambda} 1489 \] 1490 1491 It is clear \(M\) lies in \(\Sigma^{-1} M = \twisted{(\Sigma^{-1} 1492 M)}{\theta_0}\) and therefore \(M \subset \mathcal{M}\). On the other hand, 1493 \(\dim \mathcal{M}_\mu = \dim \twisted{(\Sigma^{-1} M)}{\theta_\lambda}_\mu = 1494 \dim \Sigma^{-1} M_{\mu - \lambda} = d\) for all \(\mu \in \lambda + Q\) -- 1495 \(\lambda\) standing for some fixed representative of its \(Q\)-coset. 1496 Furthermore, given \(u \in \mathcal{U}(\mathfrak{g})_0\) and \(\mu \in 1497 \lambda + Q\), 1498 \[ 1499 \operatorname{Tr}(u\!\restriction_{\mathcal{M}_\mu}) 1500 = \operatorname{Tr} 1501 (\theta_\lambda(u)\!\restriction_{\Sigma^{-1} M_{\mu - \lambda}}) 1502 \] 1503 is polynomial in \(\mu\) because of the second item of 1504 Proposition~\ref{thm:nice-automorphisms-exist}. 1505 \end{proof} 1506 1507 Lo and behold\dots 1508 1509 \begin{theorem}[Mathieu]\label{thm:mathieu-ext-exists-unique}\index{coherent family!Mathieu's \(\mExt\) coherent extension} 1510 There exists a unique semisimple coherent extension \(\mExt(M)\) of \(M\). 1511 More precisely, if \(\mathcal{M}\) is any coherent extension of \(M\), then 1512 \(\mathcal{M}^{\operatorname{ss}} \cong \mExt(M)\). Furthermore, \(\mExt(M)\) 1513 is an irreducible coherent family. 1514 \end{theorem} 1515 1516 \begin{proof} 1517 The existence part should be clear from the previous discussion: it suffices 1518 to fix some coherent extension \(\mathcal{M}\) of \(M\) and take 1519 \(\mExt(M) = \mathcal{M}^{\operatorname{ss}}\). 1520 1521 To see that \(\mExt(M)\) is irreducible, recall from 1522 Corollary~\ref{thm:bounded-is-submod-of-extension} that \(M\) is a 1523 \(\mathfrak{g}\)-submodule of \(\mExt(M)\). Since the degree of \(M\) is the 1524 same as the degree of \(\mExt(M)\), some of its weight spaces have maximal 1525 dimension inside of \(\mExt(M)\). In particular, it follows from 1526 Lemma~\ref{thm:centralizer-multiplicity} that \(\mExt(M)_\lambda = 1527 M_\lambda\) is a simple \(\mathcal{U}(\mathfrak{g})_0\)-module for some 1528 \(\lambda \in \operatorname{supp} M\). 1529 1530 As for the uniqueness of \(\mExt(M)\), fix some other semisimple coherent 1531 extension \(\mathcal{N}\) of \(M\). We claim that the multiplicity of a given 1532 simple \(\mathfrak{g}\)-module \(L\) in \(\mathcal{N}\) is determined by its 1533 \emph{trace function} 1534 \begin{align*} 1535 \mathfrak{h}^* \times \mathcal{U}(\mathfrak{g})_0 & 1536 \to K \\ 1537 (\lambda, u) & 1538 \mapsto \operatorname{Tr}(u\!\restriction_{\mathcal{N}_\lambda}) 1539 \end{align*} 1540 1541 It is a well known fact of the theory of modules that, given an associative 1542 \(K\)-algebra \(A\), a finite-dimensional semisimple \(A\)-module \(L\) is 1543 determined, up to isomorphism, by its \emph{character} 1544 \begin{align*} 1545 \chi_L : A & \to K \\ 1546 a & \mapsto \operatorname{Tr}(a\!\restriction_L) 1547 \end{align*} 1548 1549 In particular, the multiplicity of \(L\) in \(\mathcal{N}\), which is the 1550 same as the multiplicity of \(L_\lambda\) in \(\mathcal{N}_\lambda\), is 1551 determined by the character \(\chi_{\mathcal{N}_\lambda} : 1552 \mathcal{U}(\mathfrak{g})_0 \to K\). Since this holds for all simple weight 1553 \(\mathfrak{g}\)-modules, it follows that \(\mathcal{N}\) is determined by 1554 its trace function. Of course, the same holds for \(\mExt(M)\). We now claim 1555 that the trace function of \(\mathcal{N}\) is the same as that of 1556 \(\mExt(M)\). Clearly, 1557 \(\operatorname{Tr}(u\!\restriction_{\mExt(M)_\lambda}) = 1558 \operatorname{Tr}(u\!\restriction_{M_\lambda}) = 1559 \operatorname{Tr}(u\!\restriction_{\mathcal{N}_\lambda})\) for all \(\lambda 1560 \in \operatorname{supp}_{\operatorname{ess}} M\), \(u \in 1561 \mathcal{U}(\mathfrak{g})_0\). Since the essential support of \(M\) is 1562 Zariski-dense and the maps \(\lambda \mapsto 1563 \operatorname{Tr}(u\!\restriction_{\mExt(M)_\lambda})\) and \(\lambda \mapsto 1564 \operatorname{Tr}(u\!\restriction_{\mathcal{N}_\lambda})\) are polynomial in 1565 \(\lambda \in \mathfrak{h}^*\), it follows that these maps coincide for all 1566 \(u\). 1567 1568 In conclusion, \(\mathcal{N} \cong \mExt(M)\) and \(\mExt(M)\) is unique. 1569 \end{proof} 1570 1571 A sort of ``reciprocal'' of Theorem~\ref{thm:mathieu-ext-exists-unique} also 1572 holds. Namely\dots 1573 1574 \begin{proposition}\label{thm:coherent-families-are-all-ext} 1575 Let \(\mathcal{M}\) be a semisimple irreducible coherent family and \(M 1576 \subset \mathcal{M}\) be an infinite-dimensional simple submodule. Then 1577 \(\mathcal{M} \cong \mExt(M)\). In particular, all semisimple coherent 1578 families have the form \(\mathcal{M} \cong \mExt(M)\) for some simple bounded 1579 \(\mathfrak{g}\)-module \(M\). 1580 \end{proposition} 1581 1582 \begin{proof} 1583 Since \(M \subset \mathcal{M}\), \(M\) is bounded and 1584 \(\operatorname{supp}_{\operatorname{ess}} M\) is Zariski-dense. In addition, 1585 it follows from Lemma~\ref{thm:set-of-simple-u0-mods-is-open} that \(U = 1586 \{\lambda \in \mathfrak{h}^* : \mathcal{M}_\lambda \ \text{is a simple 1587 $\mathcal{U}(\mathfrak{g})_0$-module}\}\) is a Zariski-open subset -- which 1588 is non-empty since \(\mathcal{M}\) is irreducible. 1589 1590 Hence there is some \(\lambda \in \operatorname{supp}_{\operatorname{ess}} M 1591 \cap U\). In particular, there is some \(\lambda \in 1592 \operatorname{supp}_{\operatorname{ess}} M\) such that \(M_\lambda = 1593 \mathcal{M}_\lambda\) and thus \(\deg M = \dim \mathcal{M}_\lambda = \deg 1594 \mathcal{M}\). This implies that \(\mathcal{M}\) is a coherent extension of 1595 \(M\), so that by the uniqueness of semisimple irreducible coherent 1596 extensions we get \(\mathcal{M} \cong \mExt(M)\). 1597 \end{proof} 1598 1599 Having thus reduced the problem of classifying the cuspidal 1600 \(\mathfrak{g}\)-modules to that of understanding semisimple irreducible 1601 coherent families, the only remaining question for us to tackle is: what are 1602 the coherent \(\mathfrak{g}\)-families? This turns out to be a decently 1603 complicated question on its own, and we will require a full chapter to answer 1604 it. This will be the focus of our final chapter.