lie-algebras-and-their-representations
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
sl2-sl3.tex (55845B)
1 \chapter{Representations of \(\mathfrak{sl}_2(K)\) \& \(\mathfrak{sl}_3(K)\)}\label{ch:sl3} 2 3 We are, once again, faced with the daunting task of classifying the 4 finite-dimensional modules of a given (semisimple) algebra \(\mathfrak{g}\). 5 Having reduced the problem a great deal, all its left is classifying the simple 6 \(\mathfrak{g}\)-modules. We have encountered numerous examples of simple 7 \(\mathfrak{g}\)-modules over the previous chapter, but we have yet to subject 8 them to any serious scrutiny. In this chapter we begin a systematic 9 investigation of simple modules by looking at concrete examples. Specifically, 10 we will classify the simple finite-dimensional modules of certain 11 low-dimensional semisimple Lie algebras: \(\mathfrak{sl}_2(K)\) and 12 \(\mathfrak{sl}_3(K)\). 13 14 The reason why we chose \(\mathfrak{sl}_2(K)\) is a simple one: throughout the 15 previous chapters \(\mathfrak{sl}_2(K)\) has afforded us surprisingly 16 illuminating examples. We begin our analysis by recalling that the elements 17 \begin{align*} 18 e & = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} & 19 f & = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} & 20 h & = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} 21 \end{align*} 22 form a basis for \(\mathfrak{sl}_2(K)\) and satisfy 23 \begin{align*} 24 [e, f] & = h & [h, f] & = -2 f & [h, e] = 2 e 25 \end{align*} 26 27 Let \(M\) be a finite-dimensional simple \(\mathfrak{sl}_2(K)\)-module. We now 28 turn our attention to the action of \(h\) on \(M\), in particular, we 29 investigate the subspace \(\bigoplus_{\lambda} M_\lambda \subset M\) -- where 30 \(\lambda\) ranges over the eigenvalues of \(h\!\restriction_M\) and 31 \(M_\lambda\) is the corresponding eigenspace. 32 33 At this point, this is nothing short of a gamble: why look at the eigenvalues 34 of \(h\)? The short answer is that, as we shall see, this will pay off. We will 35 postpone the discussion about the real reason of why we chose \(h\), but for 36 now we may notice that, perhaps surprisingly, the action \(h\!\restriction_M\) 37 of \(h\) on a finite-dimensional simple \(\mathfrak{sl}_2(K)\)-module \(M\) 38 is always a diagonalizable operator. 39 40 Let \(\lambda\) be any eigenvalue of \(h\!\restriction_M\). Notice 41 \(M_\lambda\) is in general not a \(\mathfrak{sl}_2(K)\)-submodule of \(M\). 42 Indeed, if \(m \in M_\lambda\) then the identities 43 \begin{align*} 44 h \cdot (e \cdot m) &= 2e \cdot m + e h \cdot m = (\lambda + 2) e \cdot m \\ 45 h \cdot (f \cdot m) &= -2f \cdot m + f h \cdot m = (\lambda - 2) f \cdot m 46 \end{align*} 47 follow. In other words, \(e\) sends an element of \(M_\lambda\) to an element 48 of \(M_{\lambda + 2}\), while \(f\) sends it to an element of \(M_{\lambda - 49 2}\). Visually, we may draw 50 \begin{center} 51 \begin{tikzcd} 52 \cdots \rar[bend left=60] & 53 M_{\lambda - 2} \rar[bend left=60]{e} \lar[bend left=60] & 54 M_{\lambda} \rar[bend left=60]{e} \lar[bend left=60]{f} & 55 M_{\lambda + 2} \rar[bend left=60] \lar[bend left=60]{f} & 56 \cdots \lar[bend left=60] 57 \end{tikzcd} 58 \end{center} 59 60 This implies \(\bigoplus_\lambda M_\lambda\) is a 61 \(\mathfrak{sl}_2(K)\)-submodule, so that \(\bigoplus_\lambda M_\lambda\) is 62 either \(0\) or the entirety of \(M\) -- recall that \(M\) is simple. Since 63 \(M\) is finite dimensional, \(h\!\restriction_M\) has at least one eigenvalue 64 and therefore 65 \[ 66 M = \bigoplus_\lambda M_\lambda 67 \] 68 69 Even more so, we have seen that for any eigenvalue \(\lambda \in K\) of 70 \(h\!\restriction_M\), \(\bigoplus_{k \in \mathbb{Z}} M_{\lambda - 2 k}\) is a 71 \(\mathfrak{sl}_2(K)\)-invariant subspace, which goes to show 72 \[ 73 M = \bigoplus_{k \in \mathbb{Z}} M_{\lambda - 2 k}, 74 \] 75 and the eigenvalues of \(h\) all have the form \(\lambda - 2 k\) for some 76 \(k\). By the same token, if \(a\) is the greatest \(k \in \mathbb{Z}\) such 77 that \(V_{\lambda - 2 k} \ne 0\) and, likewise, \(b\) is the smallest \(k \in 78 \mathbb{Z}\) such that \(V_{\lambda - 2 k} \ne 0\) then 79 \[ 80 M = \bigoplus_{\substack{k \in \mathbb{Z} \\ a \le k \le b}} 81 M_{\lambda - 2 k} 82 \] 83 84 The eigenvalues of \(h\) thus form an unbroken string 85 \[ 86 \ldots, \lambda - 4, \lambda - 2, \lambda, \lambda + 2, \lambda + 4, \ldots 87 \] 88 around \(\lambda\). Our main objective is to show \(M\) is determined by this 89 string of eigenvalues. To do so, we suppose without any loss in generality that 90 \(\lambda\) is the right-most eigenvalue of \(h\), fix some nonzero \(m \in 91 M_\lambda\) and consider the set \(\{m, f \cdot m, f^2 \cdot m, \ldots\}\). 92 93 \begin{proposition}\label{thm:basis-of-irr-rep} 94 The set \(\{m, f \cdot m, f^2 \cdot m, \ldots\}\) is a basis for \(M\). In 95 addition, the action of \(\mathfrak{sl}_2(K)\) on \(M\) is given by the 96 formulas 97 \begin{equation}\label{eq:irr-rep-of-sl2} 98 \begin{aligned} 99 f^k \cdot m & \overset{e}{\mapsto} k(\lambda + 1 - k) f^{k - 1} \cdot m 100 & f^k \cdot m & \overset{f}{\mapsto} f^{k + 1} \cdot m 101 & f^k \cdot m & \overset{h}{\mapsto} (\lambda - 2 k) f^k \cdot m 102 \end{aligned} 103 \end{equation} 104 \end{proposition} 105 106 \begin{proof} 107 First of all, notice \(f^k \cdot m\) lies in \(M_{\lambda - 2 k}\), so that 108 \(\{m, f \cdot m, f^2 \cdot m, \ldots\}\) is a set of linearly independent 109 vectors. Hence it suffices to show \(M = K \langle m, f \cdot m, f^2 \cdot m, 110 \ldots \rangle\), which in light of the fact that \(M\) is simple is the same 111 as showing \(K \langle m, f \cdot m, f^2 \cdot m, \ldots \rangle\) is 112 invariant under the action of \(\mathfrak{sl}_2(K)\). 113 114 The fact that \(h \cdot (f^k \cdot m) \in K \langle m, f \cdot m, f^2 \cdot 115 m, \ldots \rangle\) follows immediately from our previous assertion that 116 \(f^k \cdot m \in M_{\lambda - 2 k}\) -- indeed, \(h \cdot (f^k \cdot m) = 117 (\lambda - 2 k) f^k \cdot m \in K \langle m, f \cdot m, f^2 \cdot m, \ldots 118 \rangle\), which also goes to show one of the formulas in 119 (\ref{eq:irr-rep-of-sl2}). Seeing \(e \cdot (f^k \cdot m) \in K \langle m, f 120 \cdot m, f^2 \cdot m, \ldots \rangle\) is a bit more complex. Clearly, 121 \[ 122 \begin{split} 123 e \cdot (f \cdot m) 124 & = h \cdot m + f \cdot (e \cdot m) \\ 125 \text{(since \(\lambda\) is the right-most eigenvalue)} 126 & = h \cdot m + f \cdot 0 \\ 127 & = \lambda m 128 \end{split} 129 \] 130 131 Next we compute 132 \[ 133 \begin{split} 134 e \cdot (f^2 \cdot m) 135 & = (h + fe) \cdot (f \cdot m) \\ 136 & = h \cdot (f \cdot m) + f \cdot (\lambda m) \\ 137 & = 2 (\lambda - 1) f \cdot m 138 \end{split} 139 \] 140 141 The pattern is starting to become clear: \(e\) sends \(f^k \cdot m\) to a 142 multiple of \(f^{k - 1} \cdot m\). Explicitly, it is not hard to check by 143 induction that 144 \[ 145 e \cdot (f^k \cdot m) = k (\lambda + 1 - k) \cdot f^{k - 1} m, 146 \] 147 which which is the first formula of (\ref{eq:irr-rep-of-sl2}). 148 \end{proof} 149 150 The significance of Proposition~\ref{thm:basis-of-irr-rep} should be 151 self-evident: we have just provided a complete description of the action of 152 \(\mathfrak{sl}_2(K)\) on \(M\). In particular, this goes to show\dots 153 154 \begin{corollary} 155 Every eigenspace of the action of \(h\) on \(M\) is \(1\)-dimensional. 156 \end{corollary} 157 158 \begin{proof} 159 It suffices to note \(\{m, f \cdot m, f^2 \cdot m, \ldots \}\) is a basis for 160 \(M\) consisting of eigenvalues of \(h\) and whose only element in 161 \(M_{\lambda - 2 k}\) is \(f^k \cdot m\). 162 \end{proof} 163 164 \begin{corollary}\label{thm:sl2-find-weights} 165 The eigenvalues of \(h\) in \(M\) form a symmetric, unbroken string of 166 integers separated by intervals of length \(2\) whose right-most value is 167 \(\dim M - 1\). 168 \end{corollary} 169 170 \begin{proof} 171 If \(f^r\) is the lowest power of \(f\) that annihilates \(m\), it follows 172 from the formulas in (\ref{eq:irr-rep-of-sl2}) that 173 \[ 174 0 = e \cdot 0 = e \cdot (f^r \cdot m) 175 = r (\lambda + 1 - r) f^{r - 1} \cdot m 176 \] 177 178 This implies \(\lambda + 1 - r = 0\) -- i.e. \(\lambda = r - 1 \in 179 \mathbb{Z}\). Now since \(\{m, f \cdot m, f^2 \cdot m, \ldots, f^{r - 1} 180 \cdot m\}\) is a basis for \(M\), \(r = \dim V\). Hence if \(\lambda = 181 \dim V - 1\) then the eigenvalues of \(h\) are 182 \[ 183 \ldots, \lambda - 6, \lambda - 4, \lambda - 2, \lambda 184 \] 185 186 To see that this string is symmetric around \(0\), simply note that the 187 left-most eigenvalue of \(h\) is precisely \(\lambda - 2 (r - 1) = 188 -\lambda\). 189 \end{proof} 190 191 Visually, the situation it thus 192 \begin{center} 193 \begin{tikzcd} 194 M_{-\lambda} \rar[bend left=60]{e} & 195 M_{- \lambda + 2} \rar[bend left=60]{e} \lar[bend left=60]{f} & 196 M_{- \lambda + 4} \rar[bend left=60] \lar[bend left=60]{f} & 197 \cdots \rar[bend left=60] \lar[bend left=60] & 198 M_{\lambda - 4} \rar[bend left=60]{e} \lar[bend left=60] & 199 M_{\lambda - 2} \rar[bend left=60]{e} \lar[bend left=60]{f} & 200 M_\lambda \lar[bend left=60]{f} 201 \end{tikzcd} 202 \end{center} 203 204 Corollary~\ref{thm:sl2-find-weights} can be used to find the eigenvalues of the 205 action of \(h\) on an arbitrary finite-dimensional 206 \(\mathfrak{sl}_2(K)\)-module. Namely, if \(M\) and \(N\) are 207 \(\mathfrak{sl}_2(K)\)-modules, \(m \in M_\mu\) and \(n \in N_\mu\) then by 208 computing 209 \[ 210 h \cdot (m + n) = h \cdot m + h \cdot n = \mu (m + n) 211 \] 212 we can see that \((M \oplus N)_\mu = M_\mu + N_\mu\). Hence the set of 213 eigenvalues of \(h\) in a \(\mathfrak{sl}_2(K)\)-module \(M\) is the union of 214 the sets of eigenvalues in its simple components, and the corresponding 215 eigenspaces are the direct sums of the eigenspaces of such simple components. 216 217 In particular, if the eigenvalues of \(M\) all have the same parity -- i.e. 218 they are either all even integers or all odd integers -- and the dimension of 219 each eigenspace is no greater than \(1\) then \(M\) must be simple, for if \(N, 220 L \subset M\) are submodules with \(M = N \oplus L\) then either \(N_\lambda = 221 0\) for all \(\lambda\) or \(L_\lambda = 0\) for all \(\lambda \in 222 \mathfrak{h}^*\). To conclude our analysis all it is left is to show that for 223 each \(\lambda \in \mathbb{Z}\) with \(\lambda \ge 0\) there is some 224 finite-dimensional simple \(M\) whose highest weight is \(\lambda\). 225 Surprisingly, we have already encountered such a \(M\). 226 227 \begin{theorem}\label{thm:sl2-exist-unique} 228 For each \(\lambda \ge 0\), \(\lambda \in \mathbb{Z}\), there exists a unique 229 simple \(\mathfrak{sl}_2(K)\)-module whose left-most eigenvalue of \(h\) is 230 \(\lambda\). 231 \end{theorem} 232 233 \begin{proof} 234 Let \(M = K[x, y]^{(\lambda)}\) be the \(\mathfrak{sl}_2(K)\)-module of 235 homogeneous polynomials of degree \(\lambda\) in two variables, as in 236 Example~\ref{ex:sl2-polynomial-subrep}. A simple calculation shows \(M_{n - 2 237 k} = K x^{\lambda - k} y^k\) for \(k = 0, \ldots, \lambda\) and \(M_\mu = 0\) 238 otherwise. In particular, the right-most eigenvalue of \(M\) is \(\lambda\). 239 Alternatively, one can readily check that if \(K^2\) is the natural 240 \(\mathfrak{sl}_2(K)\)-module, then \(M = \operatorname{Sym}^\lambda K^2\) 241 satisfies the relations of (\ref{eq:irr-rep-of-sl2}). Indeed, the map 242 \begin{align*} 243 K[x, y]^{(\lambda)} & \to \operatorname{Sym}^\lambda K^2 \\ 244 x^k y^\ell & \mapsto e_1^k \cdot e_2^\ell 245 \end{align*} 246 is an isomorphism. 247 248 Either way, by the previous observation that a finite-dimensional 249 \(\mathfrak{sl}_2(K)\)-module whose eigenvalues all have the same parity and 250 whose corresponding eigenspace are all \(1\)-dimensional must be simple, 251 \(M\) is simple. As for the uniqueness of \(M\), it suffices to notice that 252 if \(N\) is a finite-dimensional simple \(\mathfrak{sl}_2(K)\)-module with 253 right-most eigenvalue \(\lambda\) and \(n \in N_\lambda\) is nonzero then 254 relations (\ref{eq:irr-rep-of-sl2}) imply the map 255 \begin{align*} 256 M & \to N \\ 257 f^k \cdot m & \mapsto f^k \cdot n 258 \end{align*} 259 is an isomorphism -- this is, in effect, precisely how the isomorphism \(K[x, 260 y]^{(\lambda)} \isoto \operatorname{Sym}^\lambda K^2\) was constructed. 261 \end{proof} 262 263 Our initial gamble of studying the eigenvalues of \(h\) may have seemed 264 arbitrary at first, but it payed off: we have \emph{completely} described 265 \emph{all} simple \(\mathfrak{sl}_2(K)\)-modules. It is not yet clear, however, 266 if any of this can be adapted to a general setting. In the following section we 267 shall double down on our gamble by trying to reproduce some of these results 268 for \(\mathfrak{sl}_3(K)\), hoping this will somehow lead us to a general 269 solution. In the process of doing so we will find some important clues on why 270 \(h\) was a sure bet and the race was fixed all along. 271 272 \section{Representations of \(\mathfrak{sl}_{2 + 1}(K)\)}\label{sec:sl3-reps} 273 274 The study of representations of \(\mathfrak{sl}_2(K)\) reminds me of the 275 difference between the derivative of a function \(\mathbb{R} \to \mathbb{R}\) 276 and that of a smooth map between manifolds: it is a simpler case of something 277 greater, but in some sense it is too simple of a case, and the intuition we 278 acquire from it can be a bit misleading in regards to the general setting. For 279 instance, I distinctly remember my Calculus I teacher telling the class ``the 280 derivative of the composition of two functions is not the composition of their 281 derivatives'' -- which is, of course, the \emph{correct} formulation of the 282 chain rule in the context of smooth manifolds. 283 284 The same applies to \(\mathfrak{sl}_2(K)\). It is a simple and beautiful 285 example, but unfortunately the general picture, modules of arbitrary semisimple 286 algebras, lacks its simplicity. The general purpose of this section is to 287 investigate to which extent the framework we developed for 288 \(\mathfrak{sl}_2(K)\) can be generalized to other semisimple Lie algebras. Of 289 course, the algebra \(\mathfrak{sl}_3(K)\) stands as a natural candidate for 290 potential generalizations: \(\mathfrak{sl}_3(K) = \mathfrak{sl}_{2 + 1}(K)\) 291 after all. 292 293 Our approach is very straightforward: we will fix some simple 294 \(\mathfrak{sl}_3(K)\)-module \(M\) and proceed step by step, at each point 295 asking ourselves how we could possibly adapt the framework we laid out for 296 \(\mathfrak{sl}_2(K)\). The first obvious question is one we have already asked 297 ourselves: why \(h\)? More specifically, why did we choose to study its 298 eigenvalues and is there an analogue of \(h\) in \(\mathfrak{sl}_3(K)\)? 299 300 The answer to the former question is one we will discuss at length in the next 301 chapter, but for now we note that perhaps the most fundamental property of 302 \(h\) is that \emph{there exists an eigenvector \(m\) of \(h\) that is 303 annihilated by \(e\)} -- that being the generator of the right-most eigenspace 304 of \(h\). This was instrumental to our explicit description of the simple 305 \(\mathfrak{sl}_2(K)\)-modules culminating in 306 Theorem~\ref{thm:sl2-exist-unique}. 307 308 Our first task is to find some analogue of \(h\) in \(\mathfrak{sl}_3(K)\), but 309 it is still unclear what exactly we are looking for. We could say we are 310 looking for an element of \(M\) that is annihilated by some analogue of \(e\), 311 but the meaning of \emph{some analogue of \(e\)} is again unclear. In fact, as 312 we shall see, no such analogue exists and neither does such element. Instead, 313 the actual way to proceed is to consider the subalgebra 314 \[ 315 \mathfrak{h} 316 = \left\{ 317 X \in 318 \begin{pmatrix} K & 0 & 0 \\ 0 & K & 0 \\ 0 & 0 & K \end{pmatrix} 319 : \operatorname{Tr}(X) = 0 320 \right\} 321 \] 322 323 The choice of \(\mathfrak{h}\) may seem like an odd choice at the moment, but 324 the point is we will later show that there exists some \(m \in M\) that is 325 simultaneously an eigenvector of each \(H \in \mathfrak{h}\) and annihilated by 326 half of the remaining elements of \(\mathfrak{sl}_3(K)\). This is exactly 327 analogous to the situation we found in \(\mathfrak{sl}_2(K)\): \(h\) 328 corresponds to the subalgebra \(\mathfrak{h}\), and the eigenvalues of \(h\) in 329 turn correspond to linear functions \(\lambda : \mathfrak{h} \to k\) such that 330 \(H \cdot m = \lambda(H) m\) for each \(H \in \mathfrak{h}\) and some nonzero 331 \(m \in M\). We call such functionals \(\lambda\) \emph{eigenvalues of 332 \(\mathfrak{h}\)}, and we say \emph{\(m\) is an eigenvector of 333 \(\mathfrak{h}\)}. 334 335 Once again, we will pay special attention to the eigenvalue decomposition 336 \begin{equation}\label{eq:weight-module} 337 M = \bigoplus_\lambda M_\lambda 338 \end{equation} 339 where \(\lambda\) ranges over all eigenvalues of \(\mathfrak{h}\) and 340 \(M_\lambda = \{ m \in M : H \cdot m = \lambda(H) m, \forall H \in \mathfrak{h} 341 \}\). We should note that the fact that (\ref{eq:weight-module}) holds is not 342 at all obvious. This is because in general \(M_\lambda\) is not the eigenspace 343 associated with an eigenvalue of any particular operator \(H \in 344 \mathfrak{h}\), but instead the eigenspace of the action of the entire algebra 345 \(\mathfrak{h}\). Fortunately for us, (\ref{eq:weight-module}) always holds, 346 but we will postpone its proof to the next chapter. 347 348 Next we turn our attention to the remaining elements of \(\mathfrak{sl}_3(K)\). 349 In our analysis of \(\mathfrak{sl}_2(K)\) we saw that the eigenvalues of \(h\) 350 differed from one another by multiples of \(2\). A possible way to interpret 351 this is to say \emph{the eigenvalues of \(h\) differ from one another by 352 integral linear combinations of the eigenvalues of the adjoint action of 353 \(h\)}. In English, since 354 \begin{align*} 355 \operatorname{ad}(h) e & = 2 e & 356 \operatorname{ad}(h) f & = -2 f & 357 \operatorname{ad}(h) h & = 0, 358 \end{align*} 359 the eigenvalues of the adjoint actions of \(h\) are \(0\) and \(\pm 2\), and 360 the eigenvalues of the action of \(h\) on a simple 361 \(\mathfrak{sl}_2(K)\)-module differ from one another by integral multiples of 362 \(2\). 363 364 In the case of \(\mathfrak{sl}_3(K)\), a simple calculation shows that if \([H, 365 X]\) is scalar multiple of \(X\) for all \(H \in \mathfrak{h}\) then all but 366 one entry of \(X\) are zero. Hence the eigenvectors of the adjoint action of 367 \(\mathfrak{h}\) are \(E_{i j}\) and its eigenvalues are \(\epsilon_i - 368 \epsilon_j\), where 369 \[ 370 \epsilon_i 371 \begin{pmatrix} 372 a_1 & 0 & 0 \\ 373 0 & a_2 & 0 \\ 374 0 & 0 & a_3 375 \end{pmatrix} 376 = a_i 377 \] 378 379 Visually we may draw 380 381 \begin{figure}[h] 382 \centering 383 \begin{tikzpicture}[scale=2] 384 \begin{rootSystem}{A} 385 \filldraw[black] \weight{0}{0} circle (.5pt); 386 \node[black, above right] at \weight{0}{0} {\small$0$}; 387 \wt[black]{-1}{2} 388 \wt[black]{-2}{1} 389 \wt[black]{1}{1} 390 \wt[black]{-1}{-1} 391 \wt[black]{2}{-1} 392 \wt[black]{1}{-2} 393 \node[above] at \weight{-1}{2} {$\epsilon_2 - \epsilon_3$}; 394 \node[left] at \weight{-2}{1} {$\epsilon_2 - \epsilon_1$}; 395 \node[right] at \weight{1}{1} {$\epsilon_1 - \epsilon_3$}; 396 \node[left] at \weight{-1}{-1} {$\epsilon_3 - \epsilon_1$}; 397 \node[right] at \weight{2}{-1} {$\epsilon_1 - \epsilon_2$}; 398 \node[below] at \weight{1}{-2} {$\epsilon_3 - \epsilon_1$}; 399 \node[black, above] at \weight{1}{0} {$\epsilon_1$}; 400 \node[black, above] at \weight{-1}{1} {$\epsilon_2$}; 401 \node[black, above] at \weight{0}{-1} {$\epsilon_3$}; 402 \filldraw[black] \weight{1}{0} circle (.5pt); 403 \filldraw[black] \weight{-1}{1} circle (.5pt); 404 \filldraw[black] \weight{0}{-1} circle (.5pt); 405 \end{rootSystem} 406 \end{tikzpicture} 407 \end{figure} 408 409 If we denote the eigenspace of the adjoint action of \(\mathfrak{h}\) on 410 \(\mathfrak{sl}_3(K)\) associated to \(\alpha\) by 411 \(\mathfrak{sl}_3(K)_\alpha\) and fix some \(X \in \mathfrak{sl}_3(K)_\alpha\), 412 \(H \in \mathfrak{h}\) and \(m \in M_\lambda\) then 413 \[ 414 \begin{split} 415 H \cdot (X \cdot m) 416 & = X \cdot (H \cdot m) + [H, X] \cdot m \\ 417 & = X \cdot (\lambda(H) m) + \alpha(H) X \cdot m \\ 418 & = (\lambda + \alpha)(H) X \cdot m 419 \end{split} 420 \] 421 so that \(X\) carries \(m\) to \(M_{\lambda + \alpha}\). In other words, 422 \(\mathfrak{sl}_3(k)_\alpha\) \emph{acts on \(M\) by translating vectors 423 between eigenspaces}. 424 425 For instance \(\mathfrak{sl}_3(K)_{\epsilon_1 - \epsilon_3}\) will act on the 426 adjoint \(\mathfrak{sl}_3(K)\)-modules via 427 \begin{figure}[h] 428 \centering 429 \begin{tikzpicture}[scale=2] 430 \begin{rootSystem}{A} 431 \wt[black]{0}{0} 432 \wt[black]{-1}{2} 433 \wt[black]{-2}{1} 434 \wt[black]{1}{1} 435 \wt[black]{-1}{-1} 436 \wt[black]{2}{-1} 437 \wt[black]{1}{-2} 438 \draw[-latex, black] \weight{-1.9}{1.1} -- \weight{-1.1}{1.9}; 439 \draw[-latex, black] \weight{-.9}{-.9} -- \weight{-.1}{-.1}; 440 \draw[-latex, black] \weight{0.1}{0.1} -- \weight{.9}{.9}; 441 \draw[-latex, black] \weight{1.1}{-1.9} -- \weight{1.9}{-1.1}; 442 \end{rootSystem} 443 \end{tikzpicture} 444 \end{figure} 445 446 This is again entirely analogous to the situation we observed in 447 \(\mathfrak{sl}_2(K)\). In fact, we may once more conclude\dots 448 449 \begin{theorem}\label{thm:sl3-weights-congruent-mod-root} 450 The eigenvalues of the action of \(\mathfrak{h}\) on a simple 451 \(\mathfrak{sl}_3(K)\)-module \(M\) differ from one another by integral 452 linear combinations of the eigenvalues \(\epsilon_i - \epsilon_j\) of the adjoint 453 action of \(\mathfrak{h}\) on \(\mathfrak{sl}_3(K)\). 454 \end{theorem} 455 456 \begin{proof} 457 This proof goes exactly as that of the analogous statement for 458 \(\mathfrak{sl}_2(K)\): it suffices to note that if we fix some eigenvalue 459 \(\lambda\) of \(\mathfrak{h}\) and let \(i\) and \(j\) vary then 460 \[ 461 \bigoplus_{i j} M_{\lambda + \epsilon_i - \epsilon_j} 462 \] 463 is an invariant subspace of \(M\). 464 \end{proof} 465 466 To avoid confusion we better introduce some notation to differentiate between 467 eigenvalues of the action of \(\mathfrak{h}\) on \(M\) and eigenvalues of the 468 adjoint action of \(\mathfrak{h}\). 469 470 \begin{definition}\index{weights} 471 Given a \(\mathfrak{sl}_3(K)\)-module \(M\), we will call the \emph{nonzero} 472 eigenvalues of the action of \(\mathfrak{h}\) on \(M\) \emph{weights of 473 \(M\)}. As you might have guessed, we will correspondingly refer to 474 eigenvectors and eigenspaces of a given weight by \emph{weight vectors} and 475 \emph{weight spaces}. 476 \end{definition} 477 478 It is clear from our previous discussion that the weights of the adjoint 479 \(\mathfrak{sl}_3(K)\)-module deserve some special attention. 480 481 \begin{definition}\index{weights!roots} 482 The weights of the adjoint \(\mathfrak{sl}_3(K)\)-module are called 483 \emph{roots of \(\mathfrak{sl}_3(K)\)}. Once again, the expressions 484 \emph{root vector} and \emph{root space} are self-explanatory. 485 \end{definition} 486 487 Theorem~\ref{thm:sl3-weights-congruent-mod-root} can thus be restated as\dots 488 489 \begin{definition}\index{weights!root lattice} 490 The lattice \(Q = \mathbb{Z} \langle \epsilon_i - \epsilon_j : i, j = 1, 2, 3 491 \rangle\) is called \emph{the root lattice of \(\mathfrak{sl}_3(K)\)}. 492 \end{definition} 493 494 \begin{corollary} 495 The weights of a simple \(\mathfrak{sl}_3(K)\)-module \(M\) are all congruent 496 modulo the root lattice \(Q\). In other words, the weights of \(M\) all lie 497 in a single \(Q\)-coset \(\xi \in \mfrac{\mathfrak{h}^*}{Q}\). 498 \end{corollary} 499 500 At this point we could keep playing the tedious game of reproducing the 501 arguments from the previous section in the context of \(\mathfrak{sl}_3(K)\). 502 However, it is more profitable to use our knowledge of 503 \(\mathfrak{sl}_2(K)\)-modules instead. Notice that the canonical inclusion 504 \(\mathfrak{gl}_2(K) \to \mathfrak{gl}_3(K)\) -- as described in 505 Example~\ref{ex:gln-inclusions} -- restricts to an injective homomorphism 506 \(\mathfrak{sl}_2(K) \to \mathfrak{sl}_3(K)\). In other words, 507 \(\mathfrak{sl}_2(K)\) is isomorphic to the image \(\mathfrak{s}_{1 2} = K 508 \langle E_{1 2}, E_{2 1}, [E_{1 2}, E_{2 1}] \rangle \subset 509 \mathfrak{sl}_3(K)\) of the inclusion \(\mathfrak{sl}_2(K) \to 510 \mathfrak{sl}_3(K)\). We may thus regard \(M\) as a 511 \(\mathfrak{sl}_2(K)\)-module by restricting to \(\mathfrak{s}_{1 2}\). 512 513 Our first observation is that, since the root spaces act by translation, the 514 subspace 515 \[ 516 \bigoplus_{k \in \mathbb{Z}} M_{\lambda - k (\epsilon_1 - \epsilon_2)}, 517 \] 518 must be invariant under the action of \(E_{1 2}\) and \(E_{2 1}\) for all 519 \(\lambda \in \mathfrak{h}^*\). This goes to show \(\bigoplus_k M_{\lambda - k 520 (\epsilon_1 - \epsilon_2)}\) is a \(\mathfrak{sl}_2(K)\)-submodule of \(M\) for all 521 weights \(\lambda\) of \(M\). Furthermore, one can easily see that the 522 eigenspace of the action of \(h\) on \(\bigoplus_{k \in \mathbb{Z}} M_{\lambda 523 - k (\epsilon_1 - \epsilon_2)}\) associated with the eigenvalue \(\lambda(H) - 2k\) 524 is precisely the weight space \(M_{\lambda - k (\epsilon_2 - \epsilon_1)}\). 525 526 Visually, 527 \begin{center} 528 \begin{tikzpicture} 529 \begin{rootSystem}{A} 530 \node at \weight{-4}{2} (l) {}; 531 \node at \weight{-2}{1} (a) {}; 532 \node at \weight{0}{0} (b) {}; 533 \node at \weight{2}{-1} (c) {}; 534 \node at \weight{4}{-2} (r) {}; 535 \draw \weight{-3}{1.5} -- \weight{3}{-1.5}; 536 \draw[dotted] \weight{-3}{1.5} -- (l); 537 \draw[dotted] \weight{3}{-1.5} -- (r); 538 \foreach \i in {-1, 0, 1}{\wt[black]{-2*\i}{\i}} 539 \draw[-latex] (l) to[bend left=40] (a); 540 \draw[-latex] (a) to[bend left=40] (b); 541 \draw[-latex] (b) to[bend left=40] (c); 542 \draw[-latex] (c) to[bend left=40] (r); 543 \draw[-latex] (r) to[bend left=40] (c); 544 \draw[-latex] (c) to[bend left=40] (b); 545 \draw[-latex] (b) to[bend left=40] (a); 546 \draw[-latex] (a) to[bend left=40] (l); 547 \node[above right] at (b) {\small\(\lambda\)}; 548 \node[above right=2pt] at \weight{-3}{1.5} {\small\(E_{1 2}\)}; 549 \node[below left=2pt] at \weight{-3}{1.5} {\small\(E_{2 1}\)}; 550 \end{rootSystem} 551 \end{tikzpicture} 552 \end{center} 553 554 In general, we find\dots 555 556 \begin{proposition} 557 Given \(i < j\), the subalgebra \(\mathfrak{s}_{i j} = K \langle E_{i j}, 558 E_{j i}, [E_{i j}, E_{j i}] \rangle\) is isomorphic to 559 \(\mathfrak{sl}_2(K)\). In addition, given a weight \(\lambda \in 560 \mathfrak{h}^*\) of \(M\), the space 561 \[ 562 N = \bigoplus_{k \in \mathbb{Z}} M_{\lambda - k (\epsilon_i - \epsilon_j)} 563 \] 564 is invariant under the action of \(\mathfrak{s}_{i j}\) and 565 \[ 566 M_{\lambda - k (\epsilon_i - \epsilon_j)} 567 = N_{\lambda([E_{i j}, E_{j i}]) - 2k} 568 \] 569 \end{proposition} 570 571 \begin{proof} 572 In effect, if \(i \ne k \ne j\) then \(\mathfrak{s}_{i j}\) is the subalgebra 573 of matrices whose \(k\)-th row and \(k\)-th column are nil. For instance, if 574 \(i = 1\) and \(j = 3\) then 575 \[ 576 \mathfrak{s}_{1 3} 577 = \begin{pmatrix} K & 0 & K \\ 0 & 0 & 0 \\ K & 0 & K \end{pmatrix} 578 \cap \mathfrak{sl}_3(K) 579 \] 580 581 In this case, the map 582 \begin{align*} 583 \mathfrak{s}_{1 3} & \to \mathfrak{sl}_2(K) \\ 584 \begin{pmatrix} a & 0 & b \\ 0 & 0 & 0 \\ c & 0 & -a \end{pmatrix} 585 & \mapsto 586 \begin{pmatrix} 587 a & \tm{topA}{0} & b \\ 588 \tm{leftA}{0} & 0 & \tm{rightA}{0} \\ 589 c & \tm{bottomA}{0} & -a 590 \end{pmatrix} 591 = \begin{pmatrix} a & b \\ c & -a \end{pmatrix} 592 \DrawVLine[black]{topA}{bottomA} 593 \DrawHLine[black]{leftA}{rightA} 594 \end{align*} 595 is an isomorphism of Lie algebras. In general, the map 596 \begin{align*} 597 \mathfrak{s}_{i j} & \to \mathfrak{sl}_2(K) \\ 598 E_{i j} & \mapsto e \\ 599 E_{j i} & \mapsto f \\ 600 [E_{i j}, E_{j i}] & \mapsto h 601 \end{align*} 602 which ``erases the \(k\)-th row and the \(k\)-th column'' of a matrix is an 603 isomorphism. 604 605 To see that \(N\) is invariant under the action of \(\mathfrak{s}_{i j}\), it 606 suffices to notice \(E_{i j}\) and \(E_{j i}\) map \(m \in M_{\lambda - k 607 (\epsilon_i - \epsilon_j)}\) to \(E_{i j} \cdot m \in M_{\lambda - (k - 1) (\epsilon_i - 608 \epsilon_j)}\) and \(E_{j i} \cdot m \in M_{\lambda - (k + 1) (\epsilon_i - 609 \epsilon_j)}\), respectively. Moreover, 610 \[ 611 (\lambda - k (\epsilon_i - \epsilon_j))([E_{i j}, E_{j i}]) 612 = \lambda([E_{i j}, E_{j i}]) - k (1 - (-1)) 613 = \lambda([E_{i j}, E_{j i}]) - 2 k, 614 \] 615 which goes to show \(M_{\lambda - k (\epsilon_i - \epsilon_j)} \subset 616 N_{\lambda([E_{i j}, E_{j i}]) - 2k}\). On the other hand, if we suppose \(0 617 < \dim M_{\lambda - k (\epsilon_i - \epsilon_j)} < \dim N_{\lambda([E_{i j}, E_{j 618 i}]) - 2 k}\) for some \(k\) we arrive at 619 \[ 620 \dim N 621 = \sum_k \dim M_{\lambda - k (\epsilon_i - \epsilon_j)} 622 < \sum_k \dim N_{\lambda([E_{i j}, E_{j i}]) - 2k} 623 = \dim N, 624 \] 625 a contradiction. 626 \end{proof} 627 628 As a first consequence of this, we show\dots 629 630 \begin{definition}\index{weights!weight lattice} 631 The lattice \(P = \mathbb{Z} \langle \epsilon_1, \epsilon_2, \epsilon_3 \rangle\) 632 is called \emph{the weight lattice of \(\mathfrak{sl}_3(K)\)}. 633 \end{definition} 634 635 \begin{corollary}\label{thm:sl3-weights-fit-in-weight-lattice} 636 Every weight \(\lambda\) of \(M\) lies in the weight lattice \(P\). 637 \end{corollary} 638 639 \begin{proof} 640 It suffices to note \(\lambda([E_{i j}, E_{j i}])\) is an eigenvalue of \(h\) 641 in a finite-dimensional \(\mathfrak{sl}_2(K)\)-module, so it must be an 642 integer. Now since 643 \[ 644 \lambda 645 \begin{pmatrix} 646 a & 0 & 0 \\ 647 0 & b & 0 \\ 648 0 & 0 & -a -b 649 \end{pmatrix} 650 = 651 \lambda 652 \begin{pmatrix} 653 a & 0 & 0 \\ 654 0 & 0 & 0 \\ 655 0 & 0 & -a 656 \end{pmatrix} 657 + 658 \lambda 659 \begin{pmatrix} 660 0 & 0 & 0 \\ 661 0 & b & 0 \\ 662 0 & 0 & -b 663 \end{pmatrix} 664 = 665 a \lambda([E_{1 3}, E_{3 1}]) + b \lambda([E_{2 3}, E_{3 2}]), 666 \] 667 which is to say \(\lambda = \lambda([E_{1 3}, E_{3 1}]) \epsilon_1 + 668 \lambda([E_{2 3}, E_{3 2}]) \epsilon_2 \in P\). 669 \end{proof} 670 671 There is a clear parallel between the case of \(\mathfrak{sl}_3(K)\) and that 672 of \(\mathfrak{sl}_2(K)\), where we observed that the eigenvalues of the action 673 of \(h\) all lied in the lattice \(P = \mathbb{Z}\) and were congruent modulo 674 the sublattice \(Q = 2 \mathbb{Z}\). 675 676 Among other things, this last result goes to show that the diagrams we have 677 been drawing are in fact consistent with the theory we have developed. Namely, 678 since all weights lie in the rational span of \(\{\epsilon_1, \epsilon_2, 679 \epsilon_3\}\), we may as well draw them in the Cartesian plane. In fact, the 680 attentive reader may notice that \(\kappa(E_{1 2}, E_{2 3}) = - \sfrac{1}{2}\), 681 so that the angle -- with respect to the Killing form \(\kappa\) -- between the 682 root vectors \(E_{1 2}\) and \(E_{2 3}\) is precisely the same as the angle 683 between the points representing their roots \(\epsilon_1 - \epsilon_2\) and 684 \(\epsilon_2 - \epsilon_3\) in the Cartesian plane. Since \(\epsilon_1 - \epsilon_2\) 685 and \(\epsilon_2 - \epsilon_3\) span \(\mathfrak{h}^*\), this implies the diagrams 686 we've been drawing are given by an isometry \(\mathbb{Q} P \isoto 687 \mathbb{Q}^2\), where \(\mathbb{Q} P\) is endowed with the bilinear form 688 defined by \((\epsilon_i - \epsilon_j, \epsilon_k - \alpha_\ell) \mapsto \kappa(E_{i 689 j}, E_{k \ell})\) -- which we denote by \(\kappa\) as well. 690 691 To proceed we once more refer to the previously established framework: next we 692 saw that the eigenvalues of \(h\) form an unbroken string of integers symmetric 693 around \(0\). To prove this we analyzed the right-most eigenvalues of \(h\) and 694 their eigenvectors, providing an explicit description of the simple 695 \(\mathfrak{sl}_2(K)\)-modules in terms of these vectors. We may 696 reproduce these steps in the context of \(\mathfrak{sl}_3(K)\) by fixing a 697 direction in the plane an considering the weight lying the furthest in that 698 direction. 699 700 For instance, let's say we fix the direction 701 \begin{center} 702 \begin{tikzpicture}[scale=2] 703 \begin{rootSystem}{A} 704 \wt[black]{0}{0} 705 \wt[black]{-1}{2} 706 \wt[black]{-2}{1} 707 \wt[black]{1}{1} 708 \wt[black]{-1}{-1} 709 \wt[black]{2}{-1} 710 \wt[black]{1}{-2} 711 \draw[-latex, black, thick] \weight{-1.5}{-.5} -- \weight{1.5}{.5}; 712 \end{rootSystem} 713 \end{tikzpicture} 714 \end{center} 715 and let \(\lambda\) be the weight lying the furthest in this direction. 716 717 Its easy to see what we mean intuitively by looking at the previous picture, 718 but its precise meaning is still allusive. Formally this means we will choose a 719 linear functional \(f : \mathbb{Q} P \to \mathbb{Q}\) and pick the weight that 720 maximizes \(f\). To avoid any ambiguity we should choose the direction of a 721 line irrational with respect to the root lattice \(Q\) -- for if \(f\) is not 722 irrational there may be multiple choices the ``weight lying the furthest'' 723 along this direction. 724 725 \begin{definition} 726 We say that a root \(\alpha\) is positive if \(f(\alpha) > 0\) -- i.e. if it 727 lies to the right of the direction we chose. Otherwise we say \(\alpha\) is 728 negative. Notice that \(f(\alpha) \ne 0\) since by definition \(\alpha \ne 729 0\) and \(f\) is irrational with respect to the lattice \(Q\). 730 \end{definition} 731 732 The next observation we make is that all others weights of \(M\) must lie in a 733 sort of \(\frac{1}{3}\)-cone with apex at \(\lambda\), as shown in 734 \begin{center} 735 \begin{tikzpicture} 736 \AutoSizeWeightLatticefalse 737 \begin{rootSystem}{A} 738 \weightLattice{3} 739 \fill[gray!50,opacity=.2] (hex cs:x=5,y=-7) -- (hex cs:x=1,y=1) -- 740 (hex cs:x=-7,y=5) arc (150:270:{7*\weightLength}); 741 \draw[black, thick] (hex cs:x=5,y=-7) -- (hex cs:x=1,y=1) -- 742 (hex cs:x=-7,y=5); 743 \filldraw[black] (hex cs:x=1,y=1) circle (1pt); 744 \node[above right=-2pt] at (hex cs:x=1,y=1) {\small\(\lambda\)}; 745 \end{rootSystem} 746 \end{tikzpicture} 747 \end{center} 748 749 Indeed, if this is not the case then, by definition, \(\lambda\) is not the 750 weight placed the furthest in the direction we chose. Given our previous 751 assertion that the root spaces of \(\mathfrak{sl}_3(K)\) act on the weight 752 spaces of \(M\) via translation, this implies that \(E_{1 2}\), \(E_{1 3}\) and 753 \(E_{2 3}\) all annihilate \(M_\lambda\), or otherwise one of \(M_{\lambda + 754 \epsilon_1 - \epsilon_2}\), \(M_{\lambda + \epsilon_1 - \epsilon_3}\) and \(M_{\lambda 755 + \epsilon_2 - \epsilon_3}\) would be nonzero -- which contradicts the hypothesis 756 that \(\lambda\) lies the furthest in the direction we chose. In other 757 words\dots 758 759 \begin{proposition}\label{thm:sl3-mod-is-highest-weight} 760 There is a weight vector \(m \in M\) that is annihilated by all positive root 761 spaces of \(\mathfrak{sl}_3(K)\). 762 \end{proposition} 763 764 \begin{proof} 765 It suffices to note that the positive roots of \(\mathfrak{sl}_3(K)\) are 766 precisely \(\epsilon_1 - \epsilon_2\), \(\epsilon_1 - \epsilon_3\) and \(\epsilon_2 - 767 \epsilon_3\), with root vectors \(E_{1 2}\), \(E_{1 3}\) and \(E_{2 3}\), 768 respectively. 769 \end{proof} 770 771 \index{weights!highest weight} 772 We call \(\lambda\) \emph{the highest weight of \(M\)}, and we call any nonzero 773 \(m \in M_\lambda\) \emph{a highest weight vector}. Going back to the case of 774 \(\mathfrak{sl}_2(K)\), we then constructed an explicit basis for our simple 775 module in terms of a highest weight vector, which allowed us to provide an 776 explicit description of the action of \(\mathfrak{sl}_2(K)\) in terms of its 777 standard basis, and finally we concluded that the eigenvalues of \(h\) must be 778 symmetrical around \(0\). An analogous procedure could be implemented for 779 \(\mathfrak{sl}_3(K)\) -- and indeed that's what we will do later down the line 780 -- but instead we would like to focus on the problem of finding the weights of 781 \(M\) in the first place. 782 783 We will start out by trying to understand the weights in the boundary of 784 previously drawn cone. As we have just seen, we can get to other weight spaces 785 from \(M_\lambda\) by successively applying \(E_{2 1}\). 786 \begin{center} 787 \begin{tikzpicture} 788 \begin{rootSystem}{A} 789 \node at \weight{3}{1} (a) {}; 790 \node at \weight{1}{2} (b) {}; 791 \node at \weight{-1}{3} (c) {}; 792 \node at \weight{-3}{4} (d) {}; 793 \node at \weight{-5}{5} (e) {}; 794 \draw \weight{3}{1} -- \weight{-4}{4.5}; 795 \draw[dotted] \weight{-4}{4.5} -- \weight{-5}{5}; 796 \foreach \i in {1,...,4}{\wt[black]{5-2*\i}{\i}} 797 \node[above right=-2pt] at (hex cs:x=3,y=1){\small\(\lambda\)}; 798 \draw[-latex] (a) to[bend left=40] (b); 799 \draw[-latex] (b) to[bend left=40] (c); 800 \draw[-latex] (c) to[bend left=40] (d); 801 \draw[-latex] (d) to[bend left=40] (e); 802 \end{rootSystem} 803 \end{tikzpicture} 804 \end{center} 805 806 Notice that \(\lambda([E_{1 2}, E_{2 1}]) \in \mathbb{Z}\) is the right-most 807 eigenvalue of the \(\mathfrak{sl}_2(K)\)-module \(\bigoplus_{k \in \mathbb{Z}} 808 M_{\lambda - k (\epsilon_1 - \epsilon_2)}\). In particular, \(\lambda([E_{1 2}, 809 E_{2 1}])\) must be positive. In addition, since the eigenspace of the 810 eigenvalue \(\lambda([E_{1 2}, E_{2 1}]) - 2k\) of the action of \(h\) on 811 \(\bigoplus_{k \in \mathbb{N}} M_{\lambda - k (\epsilon_1 - \epsilon_2)}\) is 812 \(M_{\lambda - k (\epsilon_1 - \epsilon_2)}\), the weights of \(M\) appearing the 813 string \(\lambda, \lambda + (\epsilon_1 - \epsilon_2), \ldots, \lambda + k 814 (\epsilon_1 - \epsilon_2), \ldots\) must be symmetric with respect to the line 815 \(\kappa(\epsilon_1 - \epsilon_2, \alpha) = 0\). The picture is thus 816 \begin{center} 817 \begin{tikzpicture} 818 \AutoSizeWeightLatticefalse 819 \begin{rootSystem}{A} 820 \setlength{\weightRadius}{2pt} 821 \weightLattice{4} 822 \draw[thick] \weight{3}{1} -- \weight{-3}{4}; 823 \wt[black]{0}{0} 824 \node[above left] at \weight{0}{0} {\small\(0\)}; 825 \foreach \i in {1,...,4}{\wt[black]{5-2*\i}{\i}} 826 \node[above right=-2pt] at (hex cs:x=3,y=1){\small\(\lambda\)}; 827 \draw[very thick] \weight{0}{-4} -- \weight{0}{4} 828 node[above]{\small\(\kappa(\epsilon_1 - \epsilon_2, \alpha) = 0\)}; 829 \end{rootSystem} 830 \end{tikzpicture} 831 \end{center} 832 833 We could apply this same argument to the subspace \(\bigoplus_k M_{\lambda - k 834 (\epsilon_2 - \epsilon_3)}\), so that the weights in this subspace must be 835 symmetric with respect to the line \(\kappa(\epsilon_2 - \epsilon_3, \alpha) = 0\). 836 The picture is now 837 \begin{center} 838 \begin{tikzpicture} 839 \AutoSizeWeightLatticefalse 840 \begin{rootSystem}{A} 841 \setlength{\weightRadius}{2pt} 842 \weightLattice{4} 843 \draw[thick] \weight{3}{1} -- \weight{-3}{4}; 844 \draw[thick] \weight{3}{1} -- \weight{4}{-1}; 845 \wt[black]{0}{0} 846 \wt[black]{4}{-1} 847 \node[above left] at \weight{0}{0} {\small\(0\)}; 848 \foreach \i in {1,...,4}{\wt[black]{5-2*\i}{\i}} 849 \node[above right=-2pt] at (hex cs:x=3,y=1){\small\(\lambda\)}; 850 \draw[very thick] \weight{0}{-4} -- \weight{0}{4} 851 node[above]{\small\(\kappa(\epsilon_1 - \epsilon_2, \alpha) = 0\)}; 852 \draw[very thick] \weight{-4}{0} -- \weight{4}{0} 853 node[right]{\small\(\kappa(\epsilon_2 - \epsilon_3, \alpha) = 0\)}; 854 \end{rootSystem} 855 \end{tikzpicture} 856 \end{center} 857 858 Needless to say, we could keep applying this method to the weights at the ends 859 of our string, arriving at 860 \begin{center} 861 \begin{tikzpicture} 862 \AutoSizeWeightLatticefalse 863 \begin{rootSystem}{A} 864 \setlength{\weightRadius}{2pt} 865 \weightLattice{5} 866 \draw[thick] \weight{3}{1} -- \weight{-3}{4}; 867 \draw[thick] \weight{3}{1} -- \weight{4}{-1}; 868 \draw[thick] \weight{-3}{4} -- \weight{-4}{3}; 869 \draw[thick] \weight{-4}{3} -- \weight{-1}{-3}; 870 \draw[thick] \weight{1}{-4} -- \weight{4}{-1}; 871 \draw[thick] \weight{-1}{-3} -- \weight{1}{-4}; 872 \wt[black]{-4}{3} 873 \wt[black]{-3}{1} 874 \wt[black]{-2}{-1} 875 \wt[black]{-1}{-3} 876 \wt[black]{1}{-4} 877 \wt[black]{2}{-3} 878 \wt[black]{3}{-2} 879 \wt[black]{4}{-1} 880 \foreach \i in {1,...,4}{\wt[black]{5-2*\i}{\i}} 881 \node[above right=-2pt] at (hex cs:x=3,y=1){\small\(\lambda\)}; 882 \draw[very thick] \weight{-5}{5} -- \weight{5}{-5}; 883 \draw[very thick] \weight{0}{-5} -- \weight{0}{5}; 884 \draw[very thick] \weight{-5}{0} -- \weight{5}{0}; 885 \end{rootSystem} 886 \end{tikzpicture} 887 \end{center} 888 889 We claim all dots \(\mu\) lying inside the hexagon we have drawn must also be 890 weights -- i.e. \(M_\mu \ne 0\). Indeed, by applying the same argument to an 891 arbitrary weight \(\nu\) in the boundary of the hexagon we get a 892 \(\mathfrak{sl}_2(K)\)-module whose weights correspond to weights of \(M\) 893 lying in a string inside the hexagon, and whose right-most weight is precisely 894 the weight of \(M\) we started with. 895 \begin{center} 896 \begin{tikzpicture} 897 \AutoSizeWeightLatticefalse 898 \begin{rootSystem}{A} 899 \setlength{\weightRadius}{2pt} 900 \weightLattice{5} 901 \draw[thick] \weight{3}{1} -- \weight{-3}{4}; 902 \draw[thick] \weight{3}{1} -- \weight{4}{-1}; 903 \draw[thick] \weight{-3}{4} -- \weight{-4}{3}; 904 \draw[thick] \weight{-4}{3} -- \weight{-1}{-3}; 905 \draw[thick] \weight{1}{-4} -- \weight{4}{-1}; 906 \draw[thick] \weight{-1}{-3} -- \weight{1}{-4}; 907 \wt[black]{-4}{3} 908 \wt[black]{-3}{1} 909 \wt[black]{-2}{-1} 910 \wt[black]{-1}{-3} 911 \wt[black]{1}{-4} 912 \wt[black]{2}{-3} 913 \wt[black]{3}{-2} 914 \wt[black]{4}{-1} 915 \foreach \i in {1,...,4}{\wt[black]{5-2*\i}{\i}} 916 \node[above right=-2pt] at \weight{1}{2} {\small\(\nu\)}; 917 \node[above right=-2pt] at (hex cs:x=3,y=1){\small\(\lambda\)}; 918 \draw[very thick] \weight{-5}{5} -- \weight{5}{-5}; 919 \draw[very thick] \weight{0}{-5} -- \weight{0}{5}; 920 \draw[very thick] \weight{-5}{0} -- \weight{5}{0}; 921 \draw[dashed, thick] \weight{1}{2} -- \weight{-2}{-1}; 922 \wt[black]{1}{2} 923 \wt[black]{-2}{-1} 924 \wt[black]{0}{1} 925 \wt[black]{-1}{0} 926 \end{rootSystem} 927 \end{tikzpicture} 928 \end{center} 929 930 By construction, \(\nu\) corresponds to the right-most weight of a 931 \(\mathfrak{sl}_2(K)\)-module, so that all dots lying on the dashed string must 932 occur in \(\mathfrak{sl}_2(K)\)-module. Hence they must also be weights of 933 \(M\). The final picture is thus 934 \begin{center} 935 \begin{tikzpicture} 936 \AutoSizeWeightLatticefalse 937 \begin{rootSystem}{A} 938 \setlength{\weightRadius}{2pt} 939 \weightLattice{5} 940 \draw[thick] \weight{3}{1} -- \weight{-3}{4}; 941 \draw[thick] \weight{3}{1} -- \weight{4}{-1}; 942 \draw[thick] \weight{-3}{4} -- \weight{-4}{3}; 943 \draw[thick] \weight{-4}{3} -- \weight{-1}{-3}; 944 \draw[thick] \weight{1}{-4} -- \weight{4}{-1}; 945 \draw[thick] \weight{-1}{-3} -- \weight{1}{-4}; 946 \wt[black]{-4}{3} 947 \wt[black]{-3}{1} 948 \wt[black]{-2}{-1} 949 \wt[black]{-1}{-3} 950 \wt[black]{1}{-4} 951 \wt[black]{2}{-3} 952 \wt[black]{3}{-2} 953 \wt[black]{4}{-1} 954 \foreach \i in {1,...,4}{\wt[black]{5-2*\i}{\i}} 955 \node[above right=-2pt] at (hex cs:x=3,y=1){\small\(\lambda\)}; 956 \draw[very thick] \weight{-5}{5} -- \weight{5}{-5}; 957 \draw[very thick] \weight{0}{-5} -- \weight{0}{5}; 958 \draw[very thick] \weight{-5}{0} -- \weight{5}{0}; 959 \wt[black]{-2}{2} 960 \wt[black]{0}{1} 961 \wt[black]{-1}{0} 962 \wt[black]{0}{-2} 963 \wt[black]{1}{-1} 964 \wt[black]{2}{0} 965 \end{rootSystem} 966 \end{tikzpicture} 967 \end{center} 968 969 \index{weights!weight diagrams} 970 This final picture is known as \emph{the weight diagram of \(M\)}. Finally\dots 971 972 \begin{theorem}\label{thm:sl3-irr-weights-class} 973 The weights of \(M\) are precisely the elements of the weight lattice \(P\) 974 congruent to \(\lambda\) module the sublattice \(Q\) and lying inside hexagon 975 with vertices the images of \(\lambda\) under the group generated by 976 reflections across the lines \(\kappa(\epsilon_i - \epsilon_j, \alpha) = 0\). 977 \end{theorem} 978 979 Having found all of the weights of \(M\), the only thing we are missing is an 980 existence and uniqueness theorem analogous to 981 Theorem~\ref{thm:sl2-exist-unique}. It is clear from the symmetries of the 982 locus of weights found in Theorem~\ref{thm:sl3-irr-weights-class} that if 983 \(\lambda \in P\) is the highest weight of some finite-dimensional simple 984 \(\mathfrak{sl}_3(K)\)-module \(M\) then \(\lambda\) lies in the cone 985 \(\mathbb{N} \langle \epsilon_1, - \epsilon_3 \rangle\). What's perhaps more 986 surprising is the fact that this condition is sufficient for the existence of 987 such a \(M\). In other words, our next goal is establishing\dots 988 989 \begin{definition}\index{weights!dominant weight} 990 An element \(\lambda \in P\) is called \emph{dominant} if it lies in the cone 991 \(\mathbb{N} \langle \epsilon_1, - \epsilon_3 \rangle\). 992 \end{definition} 993 994 \begin{theorem}\label{thm:sl3-existence-uniqueness} 995 For each dominant \(\lambda \in P\), there exists precisely one 996 finite-dimensional simple \(\mathfrak{sl}_3(K)\)-module \(M\) whose highest 997 weight is \(\lambda\). 998 \end{theorem} 999 1000 To proceed further we once again refer to the approach we employed in the case 1001 of \(\mathfrak{sl}_2(K)\): next we showed in 1002 Proposition~\ref{thm:basis-of-irr-rep} that any simple 1003 \(\mathfrak{sl}_2(K)\)-module is spanned by the images of its highest weight 1004 vector under \(f\). A more abstract way of putting it is to say that a simple 1005 \(\mathfrak{sl}_2(K)\)-module \(M\) of is spanned by the images of its highest 1006 weight vector under successive applications of the action of half of the root 1007 spaces of \(\mathfrak{sl}_2(K)\). The advantage of this alternative formulation 1008 is, of course, that the same holds for \(\mathfrak{sl}_3(K)\). 1009 Specifically\dots 1010 1011 \begin{proposition}\label{thm:sl3-positive-roots-span-all-irr-rep} 1012 Given a simple \(\mathfrak{sl}_3(K)\)-module \(M\) and a highest weight 1013 vector \(m \in M\), \(M\) is spanned by the images of \(m\) under successive 1014 applications of \(E_{2 1}\), \(E_{3 1}\) and \(E_{3 2}\). 1015 \end{proposition} 1016 1017 \begin{proof} 1018 Given the fact \(M\) is simple, it suffices to show that the subspace \(N\) 1019 spanned by successive applications of \(E_{2 1}\), \(E_{3 1}\) and \(E_{3 1020 2}\) to \(m\) is stable under the action of \(\mathfrak{sl}_3(K)\). In 1021 addition, since \([E_{2 1}, E_{3 1}] = [E_{3 1}, E_{3 2}] = 0\) and \([E_{2 1022 1}, E_{3 2}] = - E_{3 1}\), all successive product of \(E_{2 1}\), \(E_{3 1023 1}\) and \(E_{3 2}\) in \(\mathcal{U}(\mathfrak{sl}_3(K))\) can be written as 1024 \(E_{2 1}^a E_{3 1}^b E_{3 1}^c\) for some \(a\), \(b\) and \(c\), so that 1025 \(N\) is spanned by the elements \(E_{2 1}^a E_{3 1}^b E_{3 1}^c \cdot m\). 1026 1027 Recall that \(E_{i j}\) maps \(M_\mu\) to \(M_{\mu + \epsilon_i - \epsilon_j}\). 1028 In particular, \(E_{2 1}^a E_{3 1}^b E_{3 1}^c \cdot m \in M_{\lambda - a 1029 (\epsilon_1 - \epsilon_2) - b (\epsilon_1 - \epsilon_3) - c (\epsilon_2 - \epsilon_3)}\). 1030 In other words, 1031 \[ 1032 H E_{2 1}^a E_{3 1}^b E_{3 1}^c \cdot m 1033 = (\lambda - a (\epsilon_1 - \epsilon_2) 1034 - b (\epsilon_1 - \epsilon_3) 1035 - c (\epsilon_2 - \epsilon_3))(H) 1036 E_{2 1}^a E_{3 1}^b E_{3 1}^c \cdot m 1037 \in N 1038 \] 1039 for all \(H \in \mathfrak{h}\) and \(N\) is stable under the action of 1040 \(\mathfrak{h}\). On the other hand, \(N\) is clearly stable under the action 1041 of \(E_{2 1}\), \(E_{3 1}\) and \(E_{3 2}\). All it is left is to show \(N\) 1042 is stable under the action of \(E_{1 2}\), \(E_{1 3}\) and \(E_{2 3}\). 1043 1044 We begin by analyzing the case of \(E_{1 2}\). We have 1045 \[ 1046 \begin{split} 1047 E_{1 2} E_{2 1}^a E_{3 1}^b E_{3 2}^c \cdot m 1048 & = ([E_{1 2}, E_{2 1}] + E_{2 1} E_{1 2}) 1049 E_{2 1}^{a - 1} E_{3 1}^b E_{3 2}^c \cdot m \\ 1050 & = E_{2 1} ([E_{1 2}, E_{2 1}] + E_{2 1} E_{1 2}) 1051 E_{2 1}^{a - 2} E_{3 1}^b E_{3 2}^c \cdot m \\ 1052 & \phantom{=} \; + 1053 (\lambda - (a - 1) (\epsilon_1 - \epsilon_2) 1054 - b (\epsilon_1 - \epsilon_3) 1055 - c (\epsilon_2 - \epsilon_3)) ([E_{1 2}, E_{2 1}]) 1056 E_{2 1}^{a - 1} E_{3 1}^b E_{3 2}^c \cdot m \\ 1057 & = E_{2 1}^2 ([E_{1 2}, E_{2 1}] + E_{2 1} E_{1 2}) 1058 E_{2 1}^{a - 3} E_{3 1}^b E_{3 2}^c \cdot m \\ 1059 & \phantom{=} \; + 1060 (\lambda - (a - 1) (\epsilon_1 - \epsilon_2) 1061 - b (\epsilon_1 - \epsilon_3) 1062 - c (\epsilon_2 - \epsilon_3)) ([E_{1 2}, E_{2 1}]) 1063 E_{2 1}^{a - 1} E_{3 1}^b E_{3 2}^c \cdot m \\ 1064 & \phantom{=} \; + 1065 (\lambda - (a - 2) (\epsilon_1 - \epsilon_2) 1066 - b (\epsilon_1 - \epsilon_3) 1067 - c (\epsilon_2 - \epsilon_3)) ([E_{1 2}, E_{2 1}]) 1068 E_{2 1}^{a - 2} E_{3 1}^b E_{3 2}^c \cdot m \\ 1069 & \; \; \vdots \\ 1070 & = E_{2 1}^a E_{1 2} E_{3 1}^b E_{3 2}^c \cdot m \\ 1071 & \phantom{=} \; + 1072 (\lambda - (a - 1) (\epsilon_1 - \epsilon_2) 1073 - b (\epsilon_1 - \epsilon_3) 1074 - c (\epsilon_2 - \epsilon_3)) ([E_{1 2}, E_{2 1}]) 1075 E_{2 1}^{a - 1} E_{3 1}^b E_{3 2}^c \cdot m \\ 1076 & \phantom{=} \; + 1077 (\lambda - (a - 2) (\epsilon_1 - \epsilon_2) 1078 - b (\epsilon_1 - \epsilon_3) 1079 - c (\epsilon_2 - \epsilon_3)) ([E_{1 2}, E_{2 1}]) 1080 E_{2 1}^{a - 2} E_{3 1}^b E_{3 2}^c \cdot m \\ 1081 & \phantom{=} \; \; \, \vdots \\ 1082 & \phantom{=} \; + 1083 (\lambda - (a - a) (\epsilon_1 - \epsilon_2) 1084 - b (\epsilon_1 - \epsilon_3) 1085 - c (\epsilon_2 - \epsilon_3)) ([E_{1 2}, E_{2 1}]) 1086 E_{2 1}^{a - a} E_{3 1}^b E_{3 2}^c \cdot m \\ 1087 \end{split} 1088 \] 1089 1090 Since \((\lambda - (a - k) (\epsilon_1 - \epsilon_2) - b (\epsilon_1 - \epsilon_3) - 1091 c (\epsilon_2 - \epsilon_3)) ([E_{1 2}, E_{2 1}]) E_{2 1}^{a - k} E_{3 1}^b 1092 E_{3 2}^c \cdot m \in N\) for all \(k\), it suffices to show \(E_{2 1}^a E_{1 1093 2} E_{3 1}^b E_{3 2}^c \cdot m \in N\). But 1094 \[ 1095 \begin{split} 1096 E_{1 2} E_{3 1}^b 1097 & = (E_{3 1} E_{1 2} - E_{3 2}) E_{3 1}^{b - 1} \\ 1098 & = E_{3 1} E_{1 2} E_{3 1}^{b - 1} 1099 - E_{3 1} E_{3 2} E_{3 1}^{b - 1} \\ 1100 & = E_{3 1} (E_{3 1} E_{1 2} - E_{3 2}) E_{3 1}^{b - 2} 1101 - E_{3 2} E_{3 1}^b \\ 1102 & \; \; \vdots \\ 1103 & = E_{3 1}^b E_{1 2} - b E_{3 2} E_{3 1}^b \\ 1104 \end{split}, 1105 \] 1106 given \([E_{1 2}, E_{3 1}] = - E_{3 2}\) and \([E_{3 2}, E_{3 1}] = 0\). 1107 It then follows from the fact \(E_{1 2} \cdot m = 0\) that 1108 \[ 1109 E_{2 1}^a E_{1 2} E_{3 1}^b E_{3 2}^c \cdot m 1110 = E_{2 1}^a E_{3 1}^b E_{3 2}^c E_{1 2} \cdot m 1111 - b E_{2 1}^a E_{3 1}^b E_{3 2}^{c + 1} \cdot m 1112 = - b E_{2 1}^a E_{3 1}^b E_{3 2}^{c + 1} \cdot m \in N, 1113 \] 1114 given that \(E_{1 2}\) and \(E_{3 2}\) commute. Hence \(E_{1 2} \cdot (E_{2 1115 1}^a E_{3 1}^b E_{3 2}^c \cdot m) \in N\). Similarly, 1116 \[ 1117 E_{1 3} \cdot (E_{2 1}^a E_{3 1}^b E_{3 2}^c \cdot m), 1118 E_{2 3} \cdot (E_{2 1}^a E_{3 1}^b E_{3 2}^c \cdot m) \in N 1119 \] 1120 \end{proof} 1121 1122 The same argument also goes to show\dots 1123 1124 \begin{corollary}\label{thm:irr-component-of-high-vec} 1125 Given a finite-dimensional \(\mathfrak{sl}_3(K)\)-module \(M\) with highest 1126 weight \(\lambda\) and \(m \in M_\lambda\), the subspace spanned by 1127 successive applications of \(E_{2 1}\), \(E_{3 1}\) and \(E_{3 2}\) to \(m\) 1128 is a simple submodule whose highest weight is \(\lambda\). 1129 \end{corollary} 1130 1131 This is very interesting to us since it implies that finding \emph{any} 1132 finite-dimensional module whose highest weight is \(\lambda\) is enough for 1133 establishing the ``existence'' part of 1134 Theorem~\ref{thm:sl3-existence-uniqueness}. Moreover, constructing such a 1135 module turns out to be quite simple. 1136 1137 \begin{proof}[Proof of existence] 1138 Take \(\lambda = k \epsilon_1 - \ell \epsilon_3 \in P\) with \(k, \ell \ge 0\), 1139 so that \(\lambda\) is dominant. Consider the natural 1140 \(\mathfrak{sl}_3(K)\)-module \(K^3\). We claim that the highest weight of 1141 \(\operatorname{Sym}^k K^3 \otimes \operatorname{Sym}^\ell (K^3)^*\) is 1142 \(\lambda\). 1143 1144 First of all, notice that the weight vector of \(K^3\) are the canonical 1145 basis elements \(e_1\), \(e_2\) and \(e_3\), whose corresponding weights are 1146 \(\epsilon_1\), \(\epsilon_2\) and \(\epsilon_3\) respectively. Hence the weight 1147 diagram of \(K^3\) is 1148 \begin{center} 1149 \begin{tikzpicture}[scale=2] 1150 \AutoSizeWeightLatticefalse 1151 \begin{rootSystem}{A} 1152 \weightLattice{2} 1153 \wt[black]{1}{0} 1154 \wt[black]{-1}{1} 1155 \wt[black]{0}{-1} 1156 \node[right] at \weight{1}{0} {$\epsilon_1$}; 1157 \node[above left] at \weight{-1}{1} {$\epsilon_2$}; 1158 \node[below left] at \weight{0}{-1} {$\epsilon_3$}; 1159 \end{rootSystem} 1160 \end{tikzpicture} 1161 \end{center} 1162 and \(\epsilon_1\) is the highest weight of \(K^3\). 1163 1164 On the one hand, if \(\{f_1, f_2, f_3\}\) is the dual basis for \(\{e_1, e_2, 1165 e_3\}\) then \(H \cdot f_i = - \epsilon_i(H) f_i\) for each \(H \in 1166 \mathfrak{h}\), so that the weights of \((K^3)^*\) are precisely the 1167 opposites of the weights of \(K^3\). In other words, 1168 \begin{center} 1169 \begin{tikzpicture}[scale=2] 1170 \AutoSizeWeightLatticefalse 1171 \begin{rootSystem}{A} 1172 \weightLattice{2} 1173 \wt[black]{-1}{0} 1174 \wt[black]{1}{-1} 1175 \wt[black]{0}{1} 1176 \node[left] at \weight{-1}{0} {$-\epsilon_1$}; 1177 \node[below right] at \weight{1}{-1} {$-\epsilon_2$}; 1178 \node[above right] at \weight{0}{1} {$-\epsilon_3$}; 1179 \end{rootSystem} 1180 \end{tikzpicture} 1181 \end{center} 1182 is the weight diagram of \((K^3)^*\) and \(\epsilon_3\) is the highest weight 1183 of \((K^3)^*\). 1184 1185 On the other hand if we fix two \(\mathfrak{sl}_3(K)\)-modules \(N\) and 1186 \(L\), by computing 1187 \[ 1188 \begin{split} 1189 H \cdot (n \otimes l) 1190 & = H \cdot n \otimes l + n \otimes H \cdot l \\ 1191 & = \lambda(H) n \otimes l + n \otimes \mu(H) l \\ 1192 & = (\lambda + \mu)(H) \, (n \otimes l) 1193 \end{split} 1194 \] 1195 for each \(H \in \mathfrak{h}\), \(n \in N_\lambda\) and \(l \in L_\mu\) we 1196 can see that the weights of \(N \otimes L\) are precisely the sums of the 1197 weights of \(N\) with the weights of \(L\). 1198 1199 This implies that the highest weights of \(\operatorname{Sym}^k K^3\) and 1200 \(\operatorname{Sym}^\ell (K^3)^*\) are \(k \epsilon_1\) and \(- \ell 1201 \epsilon_3\) respectively -- with highest weight vectors \(e_1^k\) and 1202 \(f_3^\ell\). Furthermore, by the same token the highest weight of 1203 \(\operatorname{Sym}^k K^3 \otimes \operatorname{Sym}^\ell (K^3)^*\) must be 1204 \(\lambda = k e_1 - \ell e_3\) -- with highest weight vector \(e_1^k \otimes 1205 f_3^\ell\). 1206 \end{proof} 1207 1208 The ``uniqueness'' part of Theorem~\ref{thm:sl3-existence-uniqueness} is even 1209 simpler than that. 1210 1211 \begin{proof}[Proof of uniqueness] 1212 Let \(M\) and \(N\) be two simple \(\mathfrak{sl}_3(K)\)-modules with highest 1213 weight \(\lambda\). By Theorem~\ref{thm:sl3-irr-weights-class}, the weights 1214 of \(M\) are precisely the same as those of \(N\). 1215 1216 Now by computing 1217 \[ 1218 H \cdot (m + n) 1219 = H \cdot m + H \cdot n 1220 = \mu(H) m + \mu(H) n 1221 = \mu(H) (m + n) 1222 \] 1223 for each \(H \in \mathfrak{h}\), \(m \in M_\mu\) and \(n \in N_\mu\), we can 1224 see that the weights of \(M \oplus N\) are same as those of \(M\) and \(N\). 1225 Hence the highest weight of \(M \oplus N\) is \(\lambda\) -- with highest 1226 weight vectors given by the sum of highest weight vectors of \(M\) and \(N\). 1227 1228 Fix some \(m \in M_\lambda\) and \(n \in N_\lambda\) and consider the 1229 submodule \(L = \mathcal{U}(\mathfrak{sl}_3(K)) \cdot m + n \subset M \oplus 1230 N\) generated by \(m + n\). Since \(m + n\) is a highest weight of \(M \oplus 1231 N\), it follows from corollary~\ref{thm:irr-component-of-high-vec} that \(L\) 1232 is simple. The projection maps \(\pi_1 : L \to M\), \(\pi_2 : L \to N\), 1233 being nonzero homomorphism between simple \(\mathfrak{sl}_3(K)\)-modules, 1234 must be isomorphism. Finally, 1235 \[ 1236 M \cong L \cong N 1237 \] 1238 \end{proof} 1239 1240 We have been very successful in our pursue for a classification of the simple 1241 modules of \(\mathfrak{sl}_2(K)\) and \(\mathfrak{sl}_3(K)\), but so far we 1242 have mostly postponed the discussion on the motivation behind our methods. In 1243 particular, we did not explain why we chose \(h\) and \(\mathfrak{h}\), and 1244 neither why we chose to look at their eigenvalues. Apart from the obvious fact 1245 we already knew it would work a priory, why did we do all that? In the 1246 following chapter we will attempt to answer this question by looking at what we 1247 did in the last chapter through more abstract lenses and studying the 1248 representations of an arbitrary finite-dimensional semisimple Lie algebra 1249 \(\mathfrak{g}\).