memoire-m2 
My M2 Memoire on mapping class groups & their representations
 
Commit 
823af40175aabbc4d09137582736306de69d4d6e 
 Parent 
838b421afaf9aa157d877619768ebcdd903fb812 
 Author 
Pablo <pablo-pie@riseup.net > 
Date 
Tue, 25 Jun 2024 13:35:49 +0000  
Moved some comments
Fixed the use of a definition before its statement: moved comments on the capping exact sequence and the kernel of the cutting homomorphism to after the definition of Dehn twists
 
Diffstats 
3 files changed, 62 insertions, 47 deletions
diff --git a/sections/introduction.tex  b/sections/introduction.tex  
@@ -208,26 +208,13 @@ class groups.
    known as \emph{the inclusion homomorphism}.
 \end{example}
 
-% TODOOO: You haven't defined Dehn twists yet!!!!!
 -\begin{example}[Capping exact sequence]\label{ex:capping-seq}
 +\begin{example}[Capping exact homomorphism]\label{ex:capping-morphism}
    Let \(\delta \subset \partial \Sigma\) be an oriented boundary component of
   \(\Sigma\). We refer to the inclusion homomorphism \(\operatorname{cap} :
   \Mod(\Sigma) \to \Mod(\Sigma \cup_\delta (\mathbb{D}^2 \setminus \{0\}))\) as
-  \emph{the capping homomorphism}. There is an exact sequence
 -  \begin{center}
 -    \begin{tikzcd}
 -      1 \rar &
 -      \langle \tau_\delta \rangle \rar &
 -      \Mod(\Sigma) \rar{\operatorname{cap}} &
 -      \Mod(\Sigma \cup_\delta (\mathbb{D}^2 \setminus \{0\}), 0) \rar &
 -      1,
 -    \end{tikzcd}
 -  \end{center}
 -  known as \emph{the capping exact sequence} -- see
 -  \cite[Proposition~3.19]{farb-margalit} for a proof.
 +  \emph{the capping homomorphism}.
  \end{example}
 
-% TODOOO: You haven't defined Dehn twists yet!!!!!
  \begin{example}[Cutting homomorphism]\label{ex:cutting-morphism}
   Given a simple closed curve \(\alpha \subset \Sigma\), any \(f \in
   \Mod(\Sigma_{g+1})_{\vec{[\alpha]}}\) has a representative \(\phi \in
@@ -239,9 +226,7 @@ class groups.
      & \to \Mod(\Sigma\setminus\alpha) \\
     [\phi] & \mapsto [\phi\!\restriction_{\Sigma \setminus \alpha}],
   \end{align*}
-  known as \emph{the cutting homomorphism}. Furthermore, \(\ker
 -  \operatorname{cut} = \langle \tau_\alpha \rangle\) -- see
 -  \cite[Proposition~3.20]{farb-margalit} for a proof.
 +  known as \emph{the cutting homomorphism}.
  \end{example}
 
 As goes for most groups, another approach to understanding the mapping class
 
diff --git a/sections/presentation.tex  b/sections/presentation.tex  
@@ -26,16 +26,16 @@ Theorem~\ref{thm:wajnryb-presentation}.
      = \tau_\beta \tau_{\delta_4}^{-1}
     \in \Mod(\Sigma_{0, 1}^3).
   \]
-  Using the capping exact sequence from Example~\ref{ex:capping-seq}, we can
 -  then see \(\tau_{\delta_2} \tau_\alpha^{-1} \tau_{\delta_3} \tau_\gamma^{-1},
 -  \tau_\beta \tau_{\delta_4}^{-1} \in \Mod(\Sigma_0^4)\) differ by a power of
 -  \(\tau_{\delta_1}\). In fact, it follows from the Alexander method that
 -  \((\tau_{\delta_2} \tau_\alpha^{-1} \tau_{\delta_3} \tau_\gamma^{-1})
 -  (\tau_\beta \tau_{\delta_4}^{-1})^{-1} = \tau_{\delta_1}^{-1} \in
 -  \Mod(\Sigma_0^4)\). Now the disjointness relations \([\tau_{\delta_i},
 -  \tau_\alpha] = [\tau_{\delta_i}, \tau_\beta] = [\tau_{\delta_i}, \tau_\gamma]
 -  = 1\) give us the \emph{lantern relation} (\ref{eq:lantern-relation}) in
 -  \(\Mod(\Sigma_0^4)\).
 +  Using the capping exact sequence from Observation~\ref{ex:capping-seq}, we
 +  can then see \(\tau_{\delta_2} \tau_\alpha^{-1} \tau_{\delta_3}
 +  \tau_\gamma^{-1}, \tau_\beta \tau_{\delta_4}^{-1} \in \Mod(\Sigma_0^4)\)
 +  differ by a power of \(\tau_{\delta_1}\). In fact, it follows from the
 +  Alexander method that \((\tau_{\delta_2} \tau_\alpha^{-1} \tau_{\delta_3}
 +  \tau_\gamma^{-1}) (\tau_\beta \tau_{\delta_4}^{-1})^{-1} =
 +  \tau_{\delta_1}^{-1} \in \Mod(\Sigma_0^4)\). Now the disjointness relations
 +  \([\tau_{\delta_i}, \tau_\alpha] = [\tau_{\delta_i}, \tau_\beta] =
 +  [\tau_{\delta_i}, \tau_\gamma] = 1\) give us the \emph{lantern relation}
 +  (\ref{eq:lantern-relation}) in \(\Mod(\Sigma_0^4)\).
    \begin{equation}\label{eq:lantern-relation}
     \tau_\alpha \tau_\beta \tau_\gamma
     = \tau_{\delta_1} \tau_{\delta_2} \tau_{\delta_3} \tau_{\delta_4}
@@ -185,15 +185,15 @@ get\dots
  \noindent
 \begin{minipage}[b]{.47\linewidth}
 \begin{observation}\label{ex:braid-group-center}
-  Using the capping exact sequence from Example~\ref{ex:capping-seq} and
 -  the Alexander method, one can check that the center \(Z(\Mod(\Sigma_{0, n}^1))\)
 -  of \(\Mod(\Sigma_{0, n}^1)\) is freely generated by the Dehn twist \(\tau_\delta\)
 -  about the boundary \(\delta = \partial \Sigma_{0, n}^1\). It is also not very hard
 -  to see that \(\operatorname{push} : B_n \to \Mod(\Sigma_{0, n}^1)\) takes
 -  \(\sigma_1 \cdots \sigma_{n-1}\) to the rotation by
 -  \(\sfrac{2\pi}{n}\) as in Figure~\ref{fig:braid-group-center}, which is an
 -  \(n\)-th root of \(\tau_\delta\). Hence the center \(Z(B_n)\) is freely
 -  generated by \(z = (\sigma_1 \cdots \sigma_{n - 1})^n\).
 +  Using the capping exact sequence from Observation~\ref{ex:capping-seq} and
 +  the Alexander method, one can check that the center \(Z(\Mod(\Sigma_{0,
 +  n}^1))\) of \(\Mod(\Sigma_{0, n}^1)\) is freely generated by the Dehn twist
 +  \(\tau_\delta\) about the boundary \(\delta = \partial \Sigma_{0, n}^1\). It
 +  is also not very hard to see that \(\operatorname{push} : B_n \to
 +  \Mod(\Sigma_{0, n}^1)\) takes \(\sigma_1 \cdots \sigma_{n-1}\) to the
 +  rotation by \(\sfrac{2\pi}{n}\) as in Figure~\ref{fig:braid-group-center},
 +  which is an \(n\)-th root of \(\tau_\delta\). Hence the center \(Z(B_n)\) is
 +  freely generated by \(z = (\sigma_1 \cdots \sigma_{n - 1})^n\).
  \end{observation}
 \end{minipage}
 \hspace{.6cm} %
 
diff --git a/sections/twists.tex  b/sections/twists.tex  
@@ -121,7 +121,37 @@ classes that permute the punctures of \(\Sigma\).
    the inclusion homomorphism \(\Mod(D) \to \Mod(\Sigma)\).
 \end{definition}
 
-It is interesting to study how the geometry of two curves affects the
 +We can use the Alexander method to describe the kernel of capping and cutting
 +morphisms in terms of Dehn twists.
 +
 +\begin{observation}[Capping exact sequence]\label{ex:capping-seq}
 +  Let \(\delta \subset \partial \Sigma\) be a boundary component of \(\Sigma\)
 +  and \(\operatorname{cap} : \Mod(\Sigma) \to \Mod(\Sigma \cup_\delta
 +  (\mathbb{D}^2 \setminus \{0\}))\) be the corresponding the capping
 +  homomorphism from Example~\ref{ex:capping-morphism}. There is an exact
 +  sequence
 +  \begin{center}
 +    \begin{tikzcd}
 +      1 \rar &
 +      \langle \tau_\delta \rangle \rar &
 +      \Mod(\Sigma) \rar{\operatorname{cap}} &
 +      \Mod(\Sigma \cup_\delta (\mathbb{D}^2 \setminus \{0\}), 0) \rar &
 +      1,
 +    \end{tikzcd}
 +  \end{center}
 +  known as \emph{the capping exact sequence} -- see
 +  \cite[Proposition~3.19]{farb-margalit} for a proof.
 +\end{observation}
 +
 +\begin{observation}\label{ex:cutting-morphism-kernel}
 +  Let \(\alpha \subset \Sigma\) be a simple closed curve and
 +  \(\operatorname{cut} : \Mod(\Sigma)_{\vec{[\alpha]}} \to \Mod(\Sigma
 +  \setminus \alpha)\) be the cutting homomorphism from
 +  Example~\ref{ex:cutting-morphism}. Then \(\ker \operatorname{cut} = \langle
 +  \tau_\alpha \rangle \cong \mathbb{Z}\).
 +\end{observation}
 +
 +It is also interesting to study how the geometry of two curves affects the
  relationship between their corresponding Dehn twists. For instance,
 by investigating the geometric intersection number
 \[
@@ -385,14 +415,14 @@ Theorem~\ref{thm:mcg-is-fg}.
        1
     \end{tikzcd}
   \end{center}
-  from Example~\ref{ex:capping-seq}, it suffices to show that \(\Sigma_{g, n}\)
 -  is finitely generated by twists about nonseparating simple closed curves.
 -  Indeed, if \(\PMod(\Sigma_{g, r}^p \cup_{\delta_1} (\mathbb{D}^2 \setminus
 -  \{0\})) \cong \PMod(\Sigma_{g, r+1}^{p-1})\) is finitely generated by twists
 -  about nonseparating curves or boundary components, then we may lift the
 -  generators of \(\PMod(\Sigma_{g, r}^p \cup_{\delta_1} (\mathbb{D}^2 \setminus
 -  \{0\}))\) to Dehn twists about the corresponding curves in \(\Sigma_{g,
 -  r}^p\) and add \(\tau_{\delta_1}\) to the generating set.
 +  from Observation~\ref{ex:capping-seq}, it suffices to show that \(\Sigma_{g,
 +  n}\) is finitely generated by twists about nonseparating simple closed
 +  curves. Indeed, if \(\PMod(\Sigma_{g, r}^p \cup_{\delta_1} (\mathbb{D}^2
 +  \setminus \{0\})) \cong \PMod(\Sigma_{g, r+1}^{p-1})\) is finitely generated
 +  by twists about nonseparating curves or boundary components, then we may lift
 +  the generators of \(\PMod(\Sigma_{g, r}^p \cup_{\delta_1} (\mathbb{D}^2
 +  \setminus \{0\}))\) to Dehn twists about the corresponding curves in
 +  \(\Sigma_{g, r}^p\) and add \(\tau_{\delta_1}\) to the generating set.
  
   It thus suffices to consider the boundaryless case \(\Sigma_{g, r}\). As promised,
   we proceed by double induction on \(r\) and \(g\). For the base case, it is
@@ -476,7 +506,7 @@ Theorem~\ref{thm:mcg-is-fg}.
    finitely many twists about nonseparating curves. First observe that
   \(\Sigma_{g+1} \setminus \alpha \cong \Sigma_{g,2}\), as shown in
   Figure~\ref{fig:cut-along-nonseparating-adds-two-punctures}.
-  Example~\ref{ex:cutting-morphism} then gives us an exact sequence
 +  Observation~\ref{ex:cutting-morphism-kernel} then gives us an exact sequence
    \begin{equation}\label{eq:cutting-seq}
     \begin{tikzcd}
       1 \rar &