diff --git a/sections/presentation.tex b/sections/presentation.tex
@@ -152,8 +152,8 @@ get\dots
isomorphism.
\end{proposition}
-
-\begin{minipage}[b]{.45\linewidth}
+\noindent
+\begin{minipage}[b]{.47\linewidth}
\begin{observation}\label{ex:braid-group-center}
Using the capping exact sequence from Example~\ref{ex:capping-seq} and
the Alexander method, one can check that the center \(Z(\Mod(\Sigma_{0, n}^1))\)
@@ -166,8 +166,8 @@ get\dots
generated by \(z = (\sigma_1 \cdots \sigma_{n - 1})^n\).
\end{observation}
\end{minipage}
-\hspace{.5cm} %
-\begin{minipage}[b]{.45\textwidth}
+\hspace{.6cm} %
+\begin{minipage}[b]{.47\textwidth}
\centering
\includegraphics[width=.4\linewidth]{images/braid-group-center.eps}
\captionof{figure}{The clockwise rotation by $\sfrac{2\pi}{n}$ about an axis
@@ -369,7 +369,8 @@ to obtain other relations. Since \(\iota\) has \(2g + 2\) fixed points in
\end{align}
\end{fundamental-observation}
-\begin{minipage}[b]{.45\textwidth}
+\noindent
+\begin{minipage}[b]{.47\textwidth}
\centering
\includegraphics[width=.7\linewidth]{images/hyperelliptic-relation.eps}
\vspace*{.5cm}
@@ -377,8 +378,8 @@ to obtain other relations. Since \(\iota\) has \(2g + 2\) fixed points in
$\Mod(\Sigma_g)$ and the curve $\delta$ from the hyperelliptic relations.}
\label{fig:hyperellipitic-relations}
\end{minipage}
-\hspace{.5cm} %
-\begin{minipage}[b]{.45\textwidth}
+\hspace{.6cm} %
+\begin{minipage}[b]{.47\textwidth}
\centering
\includegraphics[width=.33\linewidth]{images/sphere-rotation.eps}
\captionof{figure}{The clockwise rotation by $\sfrac{\pi}{g + 1}$ about an