30th-siicusp

A short lecture of mine on my scientific initiation project for 30th SIICUSP

Commit
f3f4170162700c664755fd8507ed57698e9db7f4
Parent
b799fcd90729370309bae5fdd866095baba09c61
Author
Pablo <pablo-escobar@riseup.net>
Date

Clarified some details

Diffstat

1 file changed, 6 insertions, 5 deletions

Status File Name N° Changes Insertions Deletions
Modified main.tex 11 6 5
diff --git a/main.tex b/main.tex
@@ -105,9 +105,9 @@
   \begin{definition}
     Ume representação de \(\mathfrak{g}\)
     é um \(k\)-espaço vetorial \(V\) munido de um operador linear
-    \(\mathfrak{g} \to \mathfrak{gl}(V)\) que preserva dos colchetes.
+    \(\rho : \mathfrak{g} \to \mathfrak{gl}(V)\) que preserva dos colchetes.
     \[
-      [T X, T Y] = T [X, Y]
+      [\rho(X), \rho(Y)] = \rho([X, Y])
     \]
   \end{definition}
 \end{frame}
@@ -117,9 +117,10 @@
     A álgebra de Lie \(\mathfrak{g} = \operatorname{Lie}(G)\) é a
     \(\mathbb{R}\)-álgebra de Lie dos campos \(X \in \mathfrak{X}(G)\) tais que
     \(X_g = (d \ell_g)_1 X_1 \, \forall g \in G\), com
-    \[
-      [X, Y] f = X Y f - Y X f
-    \]
+    \begin{gather*}
+      [X, Y] f = X Y f - Y X f \\
+      X, Y \in \mathfrak{g} \quad f \in C^\infty(G)
+    \end{gather*}
   \end{definition}
   \begin{itemize}
     \item Funtorialidade