- Commit
- f3f4170162700c664755fd8507ed57698e9db7f4
- Parent
- b799fcd90729370309bae5fdd866095baba09c61
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Clarified some details
A short lecture of mine on my scientific initiation project for 30th SIICUSP
Clarified some details
1 file changed, 6 insertions, 5 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | main.tex | 11 | 6 | 5 |
diff --git a/main.tex b/main.tex @@ -105,9 +105,9 @@ \begin{definition} Ume representação de \(\mathfrak{g}\) é um \(k\)-espaço vetorial \(V\) munido de um operador linear - \(\mathfrak{g} \to \mathfrak{gl}(V)\) que preserva dos colchetes. + \(\rho : \mathfrak{g} \to \mathfrak{gl}(V)\) que preserva dos colchetes. \[ - [T X, T Y] = T [X, Y] + [\rho(X), \rho(Y)] = \rho([X, Y]) \] \end{definition} \end{frame} @@ -117,9 +117,10 @@ A álgebra de Lie \(\mathfrak{g} = \operatorname{Lie}(G)\) é a \(\mathbb{R}\)-álgebra de Lie dos campos \(X \in \mathfrak{X}(G)\) tais que \(X_g = (d \ell_g)_1 X_1 \, \forall g \in G\), com - \[ - [X, Y] f = X Y f - Y X f - \] + \begin{gather*} + [X, Y] f = X Y f - Y X f \\ + X, Y \in \mathfrak{g} \quad f \in C^\infty(G) + \end{gather*} \end{definition} \begin{itemize} \item Funtorialidade