- Commit
- f13b42ae96d5ee5d71ed3743820d9bf7d8c2a4dc
- Author
- Pablo <pablo-pie@riseup.net>
- Date
Initial commit
Python scripts to generate 3D models of some complex curves
Initial commit
4 files changed, 192 insertions, 0 deletions
Status | Name | Changes | Insertions | Deletions |
Added | .gitignore | 1 file changed | 3 | 0 |
Added | main.py | 1 file changed | 89 | 0 |
Added | model.py | 1 file changed | 100 | 0 |
Added | references/Hanson - A Construction for Computer Visualization of Certain Complex Curves.pdf | 1 file changed | 0 | 0 |
diff --git /dev/null b/.gitignore @@ -0,0 +1,3 @@ +__pycache__ +site/ +models.blend
diff --git /dev/null b/main.py @@ -0,0 +1,89 @@ +import numpy as np +from model import Model, normalized_p, riemman_sphere_p + +def s(k: int, n: int) -> np.complex128: + return np.exp(2 * np.pi * 1j * k / n) + +EPS = 0.05 +XI_MAX = 15 + +def brieskorn_surface(n: int, + eps: float = EPS, xi_max: float = XI_MAX) -> Model: + """ + Returns a model of the Brieskorn surface z_1^3 + z_2^(6 n - 1) = 1 + """ + + if not (1 <= n <= 11): + raise ValueError(f"Parameter \"n\" should be in between 1 and 11: n = {n}") + + m = Model(normalized_p) + n_ = 6*n - 1 + + thetas = np.arange(0, np.pi / 2 + eps, eps) + xis = np.arange(-xi_max, xi_max + eps, eps) + + for k1 in range(0, 3): + for k2 in range(0, n_): + patch = [] + + for theta in thetas: + row = [] + for xi in xis: + u1 = (np.exp(xi + 1j * theta)+np.exp(-xi - 1j * theta))/2 + z1 = s(k1, 3) * (u1**(2/3)) + u2 = (np.exp(xi + 1j * theta)-np.exp(-xi - 1j * theta))/2j + z2 = s(k2, n_) * (u2**(2/n_)) + + row.append(np.array([z1, z2])) + + patch.append(row) + + m.append_patch(patch) + + return m + +def fermat_surface(n: int, eps: float = EPS, xi_max: float = XI_MAX) -> Model: + """ + Returns a model of the Fermat surface z_1^n + z_2^n = 1 + """ + + if n <= 0: + raise ValueError(f"Parameter \"n\" should be positive: n = {n}") + + m = Model(normalized_p) + + thetas = np.arange(0, np.pi / 2 + eps, eps) + xis = np.arange(-xi_max, xi_max + eps, eps) + + for k1 in range(0, n): + for k2 in range(0, n): + patch = [] + + for theta in thetas: + row = [] + for xi in xis: + u1 = (np.exp(xi + 1j * theta)+np.exp(-xi - 1j * theta))/2 + z1 = s(k1, n) * (u1**(2/n)) + u2 = (np.exp(xi + 1j * theta)-np.exp(-xi - 1j * theta))/2j + z2 = s(k2, n) * (u2**(2/n)) + + row.append(np.array([z1, z2])) + + patch.append(row) + + m.append_patch(patch) + + return m + +def main(): + # print("Creating Brieskorn model for n = 1...") + # m = brieskorn_surface(1, eps=0.01) + # m.write_obj("models/brieskorn1.obj") + # print("Done!") + + print("Creating Brieskorn model for n = 6...") + m = brieskorn_surface(6, eps=0.01) + m.write_obj("models/brieskorn6.obj") + print("Done!") + +if __name__ == "__main__": main()
diff --git /dev/null b/model.py @@ -0,0 +1,100 @@ +import numpy.linalg as la +import numpy as np +from typing import List, Tuple, Iterator, Callable + +class Model: + def __init__(self, p: Callable[[np.complex128, np.complex128], np.array]): + self.patches = [] + self.bounding_x = (0, 0) + self.bounding_y = (0, 0) + self.bounding_z = (0, 0) + self.projection = p + + def append_patch(self, patch: List[List[np.array]]): + """ + Appends a 2D array of points in ℂ² to the model + and updates the bounding box + """ + x_min, x_max = self.bounding_x + y_min, y_max = self.bounding_y + z_min, z_max = self.bounding_z + + patch_real = [[self.projection(z1, z2) for z1, z2 in row] + for row in patch] + + for row in patch_real: + for x, y, z in row: + x_min = min(x, x_min) + x_max = max(x, x_max) + y_min = min(y, y_min) + y_max = max(y, y_max) + z_min = min(z, z_min) + z_max = max(z, z_max) + + self.patches.append(patch_real) + self.bounding_x = x_min, x_max + self.bounding_y = y_min, y_max + self.bounding_z = z_min, z_max + + def vertices(self) -> Iterator[Tuple[np.float64]]: + """ + Iterate through the vertices of the mesh in normalized position: + vertices are aligned to the center using the model's bounding box + """ + x_min, x_max = self.bounding_x + y_min, y_max = self.bounding_y + z_min, z_max = self.bounding_z + + x_off = -(x_min + x_max)/2 + y_off = -(y_min + y_max)/2 + z_off = -(z_min + z_max)/2 + + return ((x + x_off, y + y_off, z + z_off) + for patch in self.patches for row in patch for x, y, z in row) + + def write_obj(self, path: str): + with open(path, "w") as f: + f.write("# vertices\n") + + for x, y, z in self.vertices(): + f.write(f"v {x:.3f} {y:.3f} {z:.3f}\n") + + f.write("\n# faces\n") + + v_i = 1 # OBJ indices start at 1 + for patch in self.patches: + rows = len(patch) + cols = len(patch[0]) + + for theta_i in range(rows - 1): + for xi_i in range(cols - 1): + v1 = v_i + xi_i + theta_i * cols + v2 = v_i + xi_i + (theta_i + 1) * cols + v3 = v_i + (xi_i + 1) + theta_i * cols + v4 = v_i + (xi_i + 1) + (theta_i + 1) * cols + + f.write(f"f {v1} {v2} {v3}\n") + f.write(f"f {v2} {v4} {v3}\n") + + v_i += rows * cols + +def normalized_p(z1: np.complex128, z2: np.complex128) -> np.array: + "Projection ℝ⁴ → 𝕊³ + inclusion ℝ³ → 𝕊³" + v = np.array([z1, z2]) + v = v/la.norm(v) + + v_1, v_2 = v + x, y = v_1.real, v_1.imag + z, w = v_2.real, v_2.imag + + return np.array([x, y, z]) / (1 - w) + +def riemman_sphere_p(z1: np.complex128, z2: np.complex128) -> np.array: + "Riemman-sphere transform + projection on the first 3 coordinates" + v = np.array([z1.real, z1.imag, z2.real, z2.imag]) + n_sqrd = la.norm(v)**2 + + u1, u2, _, _ = v / (1 + n_sqrd/4) + u0 = 2 * (n_sqrd/4)/(1 + n_sqrd/4) + + return np.array([u0, u1, u2])
diff --git /dev/null b/references/Hanson - A Construction for Computer Visualization of Certain Complex Curves.pdf Binary files differ