a-conjecture-of-mine

An exercise on polyglossy: the same problem solved on multiple languages

Commit
7012c6ede27418bd590d27c319f4c9bd6119e675
Parent
b90941c3c6ffccc5ec427b1faac3a00ebbfe075c
Author
Pablo Emilio Escobar Gaviria <pablo-escobar@riseup.net>
Date

Cleaned some latex code

Diffstat

1 file changed, 3 insertions, 3 deletions

Status File Name N° Changes Insertions Deletions
Modified README.adoc 6 3 3
diff --git a/README.adoc b/README.adoc
@@ -6,8 +6,8 @@ An exercise on _polyglossy_. The same problem solved on multiple languages.
 
 Let latexmath:[S : \mathbb{N} \rightarrow \mathbb{N}] be the sum of the 
 digits of a natural number. Then 
-latexmath:[$S(n + m) \equiv S(n) + S(m) \; (\textrm{mod} \; 9)$] for all
-natural numbers latexmath:[$n$] and latexmath:[$m$].
+latexmath:[S(n + m) \equiv S(n) + S(m) \; (\textrm{mod} \; 9)] for all
+natural numbers latexmath:[n] and latexmath:[m].
 
 This conjecture can be generalized for any _positional number system_. 
 
@@ -21,7 +21,7 @@ of type `uint`, `S(a + b) - S(a) - S(b) % 9 == 0`.
 
 The conjecture was 
 https://en.wikipedia.org/wiki/Proof_by_exhaustion[proved by exhaustion] for 
-the interval latexmath:[$10^5$] 
+the interval latexmath:[10^5] 
 in multiple language implementations. The performance of each language was then 
 avaliated as the following _(*)_: