- Commit
- 7012c6ede27418bd590d27c319f4c9bd6119e675
- Parent
- b90941c3c6ffccc5ec427b1faac3a00ebbfe075c
- Author
- Pablo Emilio Escobar Gaviria <pablo-escobar@riseup.net>
- Date
Cleaned some latex code
An exercise on polyglossy: the same problem solved on multiple languages
Cleaned some latex code
1 file changed, 3 insertions, 3 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | README.adoc | 6 | 3 | 3 |
diff --git a/README.adoc b/README.adoc @@ -6,8 +6,8 @@ An exercise on _polyglossy_. The same problem solved on multiple languages. Let latexmath:[S : \mathbb{N} \rightarrow \mathbb{N}] be the sum of the digits of a natural number. Then -latexmath:[$S(n + m) \equiv S(n) + S(m) \; (\textrm{mod} \; 9)$] for all -natural numbers latexmath:[$n$] and latexmath:[$m$]. +latexmath:[S(n + m) \equiv S(n) + S(m) \; (\textrm{mod} \; 9)] for all +natural numbers latexmath:[n] and latexmath:[m]. This conjecture can be generalized for any _positional number system_. @@ -21,7 +21,7 @@ of type `uint`, `S(a + b) - S(a) - S(b) % 9 == 0`. The conjecture was https://en.wikipedia.org/wiki/Proof_by_exhaustion[proved by exhaustion] for -the interval latexmath:[$10^5$] +the interval latexmath:[10^5] in multiple language implementations. The performance of each language was then avaliated as the following _(*)_: