# a-conjecture-of-mine

An exercise on polyglossy: the same problem solved on multiple languages

commit 7012c6ede27418bd590d27c319f4c9bd6119e675
parent b90941c3c6ffccc5ec427b1faac3a00ebbfe075c
Author: Pablo Emilio Escobar Gaviria <pablo-escobar@riseup.net>
Date:   Sat, 15 Aug 2020 13:32:44 -0300

Cleaned some latex code

Diffstat:

1 file changed, 3 insertions(+), 3 deletions(-)

diff --git a/README.adoc b/README.adoc
@@ -6,8 +6,8 @@ An exercise on _polyglossy_. The same problem solved on multiple languages.

Let latexmath:[S : \mathbb{N} \rightarrow \mathbb{N}] be the sum of the
digits of a natural number. Then
-latexmath:[$S(n + m) \equiv S(n) + S(m) \; (\textrm{mod} \; 9)$] for all
-natural numbers latexmath:[$n$] and latexmath:[$m$].
+latexmath:[S(n + m) \equiv S(n) + S(m) \; (\textrm{mod} \; 9)] for all
+natural numbers latexmath:[n] and latexmath:[m].

This conjecture can be generalized for any _positional number system_.

@@ -21,7 +21,7 @@ of type uint, S(a + b) - S(a) - S(b) % 9 == 0.

The conjecture was
https://en.wikipedia.org/wiki/Proof_by_exhaustion[proved by exhaustion] for
-the interval latexmath:[$10^5$]
+the interval latexmath:[10^5]
in multiple language implementations. The performance of each language was then
avaliated as the following _(*)_: