- Commit
- 70f73dbaebdc0b222e2eb64ce6a732cbcbd6060f
- Parent
- 72cae0c32d16abae7e84645b02f2f6290069eb8d
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Fixed the proof of the Sobolev inequalities
Riemannian Geometry course project on the manifold H¹(I, M) of class H¹ curves on a Riemannian manifold M and its applications to the geodesics problem
Fixed the proof of the Sobolev inequalities
1 file changed, 11 insertions, 10 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/structure.tex | 21 | 11 | 10 |
diff --git a/sections/structure.tex b/sections/structure.tex @@ -178,7 +178,7 @@ find\dots Now given \(\xi \in H^1(E)\) fix \(t_0, t_1 \in I\) with \(\norm{\xi}_\infty = \norm{\xi_{t_1}}\) and \(\norm{\xi_{t_0}} \le \norm{\xi}_0\). If \(t_0 < t_1\) then - \begin{equation}\label{eq:one-norm-le-sqrt-two-infty-norm} + \[ \begin{split} \norm{\xi}_\infty^2 & = \norm{\xi_{t_0}}^2 @@ -199,15 +199,16 @@ find\dots + \norm{\xi}_0^2 + \norm{\nabla_{\frac\dd\dt} \xi}_0^2 \\ & \le 2 \norm{\xi}_1^2 \end{split} - \end{equation} - - Similarly, if \(t_0 > t_1\) then by inverting the orientation of the curve - \(\gamma\) we can see that \(\norm{\xi}_\infty \le \sqrt{2} \norm{\xi}_1\). - More precisely, if we set \(\eta(t) = \gamma(1 - t)\) and \(\zeta \in - H^1(E)\) with \(\zeta_t = \xi_{1 - t}\) -- a section of \(E\) along \(\eta\) - -- then \(\norm{\xi}_\infty = \norm{\zeta}_\infty \le \sqrt{2} \norm{\zeta}_1 - = \sqrt{2} \norm{\xi}_1\) because of the inequality - (\ref{eq:one-norm-le-sqrt-two-infty-norm}). + \] + + Similarly, if \(t_0 > t_1\) then + \[ + \norm{\xi}_\infty^2 + = \norm{\xi_{t_0}}^2 + \int_{t_0}^{t_1} \frac{\dd}\dt \norm{\xi_t}^2 \; \dt + = \norm{\xi_{t_0}}^2 + \int_{1 - t_0}^{1 - t_1} + \frac{\dd}\dt \norm{\xi_{1 - t}}^2 \; \dt + \le 2 \norm{\xi}_1^2 + \] \end{proof} \begin{note}