- Commit
- 78562b870acd311da33d4d8d6e9876f9218b4013
- Parent
- 7515687c9555b84811248641d85d25e4eebafe10
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Finished writing the section on the metric of H¹(I, M)
Riemannian Geometry course project on the manifold H¹(I, M) of class H¹ curves on a Riemannian manifold M and its applications to the geodesics problem
Finished writing the section on the metric of H¹(I, M)
1 file changed, 119 insertions, 7 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/structure.tex | 126 | 119 | 7 |
diff --git a/sections/structure.tex b/sections/structure.tex @@ -129,7 +129,7 @@ find\dots \] \end{proposition} -\begin{proposition} +\begin{proposition}\label{thm:h0-bundle-is-complete} Given an Euclidean bundle \(E \to I\), the space \(H^0(E)\) of all square integrable sections of \(E\) is is the completion of \({C'}^\infty(E)\) under the inner product given by @@ -345,7 +345,7 @@ M) \isoto H^1(\gamma^* TM)\), as described in proposition~\ref{thm:tanget-space-topology}. In fact, this isomorphisms may be extended to a canonical isomorphism of vector bundles, as seen in\dots -\begin{lemma} +\begin{lemma}\label{thm:alpha-fiber-bundles-definition} Given \(i = 0, 1\), the collection \(\{(\psi_{i, \gamma}(H^1(U_\gamma) \times H^i(\gamma^* TM)), \psi_{i, \gamma}^{-1})\}_{\gamma \in {C'}^\infty(I, M)}\) with @@ -357,12 +357,15 @@ extended to a canonical isomorphism of vector bundles, as seen in\dots (X, Y) \mapsto & \begin{array}[t]{rl} \psi_{i, \gamma}(X) : I & \to \exp_\gamma(X)^* TM \\ - t & \mapsto (d \exp_{\gamma(t)})_{X_t} Y_t + t & \mapsto (d \exp)_{X_t} Y_t \end{array} \end{array} \] gives \(\coprod_{\gamma \in {C'}^\infty(I, M)} H^i(\gamma^* TM) \to H^1(I, - M)\) the structure of a smooth vector bundle. + M)\) the structure of a smooth vector bundle\footnote{Here we use the + canonical identification $T_{\gamma(t)} M \cong T_{X_t}^\vee TM$ to apply + the vector $Y_t \in T_{\gamma(t)} M$ to the map $(d \exp)_{X_t} : T_{X_t} TM + \to T_{\exp_{\gamma(t)}(X_t)} M$.}. \end{lemma} \begin{proposition} @@ -396,7 +399,116 @@ extended to a canonical isomorphism of vector bundles, as seen in\dots {C'}^\infty(I, M)\) is given by \(\phi_\gamma\). \end{proof} -This last result will be the basis for our analysis of the Riemannian structure -of \(H^1(I, M)\): we may now describe the metric of \(H^1(I, M)\) in terms of -the fibers \(T_\gamma H^1(I, M) \cong H^1(\gamma^* TM)\). +At this point it may be tempting to think that we could now define the metric +of \(H^1(I, M)\) in a fiber-wise basis via the identification \(T_\gamma +H^1(\gamma^* TM) \cong H^1(\gamma^* TM)\). In a very real sense this is what we +are about to do, but unfortunately there are still technicalities in our way. +The issue we face is that proposition~\ref{thm:h0-bundle-is-complete} only +applies for \emph{smooth} vector bundles \(E \to I\), which may not be the case +for \(E = \gamma^* TM\) if \(\gamma \in H^1(I, M)\) lies outside of +\({C'}^\infty(I, M)\). In fact, neither \(\langle X , Y \rangle_0\) nor +\(\langle \, , \rangle_1\) are defined \emph{a priori} for \(X, Y \in +H^0(\gamma^* TM)\) with \(\gamma \notin {C'}^\infty(I, M)\). + +Nevertheless, we can get around this limitation by extending the metric +\(\langle \, , \rangle_0\) and the covariant derivative \(\frac\nabla\dt = +\nabla_{\frac\dd\dt}\) to +those \(H^0(\gamma^* TM)\) with \(\gamma \notin {C'}^\infty(I, M)\). In other +words, we'll show\dots + +\begin{theorem}\label{thm:h0-has-metric-extension} + The vector bundle \(\coprod_{\gamma \in H^1(I, M)} H^0(\gamma^* TM) \to + H^1(I, M)\) admits a canonical Riemannian metric whose restriction the the + fibers \(H^0(\gamma^* TM) = \left.\coprod_{\eta \in H^1(I, M)} H^0(\eta^* + TM)\right|_\gamma\) for \(\gamma \in {C'}^\infty(I, M)\) is given by + \(\langle \, , \rangle_0\) as defined in + proposition~\ref{thm:h0-bundle-is-complete}. +\end{theorem} + +\begin{proof} + Given \(\gamma \in {C'}^\infty(I, M)\) and \(X \in H^1(\gamma^*)\), let + \begin{align*} + g_X^\gamma : H^0(\gamma^* TM) \times H^0(\gamma^* TM) & \to \RR \\ + (Y, Z) & + \mapsto \int_0^1 + \langle (d\exp)_{X_t} Y_t, (d\exp)_{X_t} Z_t \rangle \; \dt + \end{align*} + + This is clearly a Riemannian metric in the bundle \(H^1(W_\gamma) \times + H^0(\gamma^* TM) \to H^1(W_\gamma)\). Now by composing with the chart + \(\psi_{0, \gamma}^{-1}\) as in + lemma~\ref{thm:alpha-fiber-bundles-definition} we get a Riemannian metric + \(g_\gamma\) in the bundle \(\coprod_{\eta \in U_\gamma} H^0(\eta^* TM) = + \left. \coprod_{\eta \in H^1(I, M)} H^0(\eta^* TM) \right|_{U_\gamma} \to + U_\gamma\). One can then quickly verify that the \(g^\gamma\)'s agree in the + intersection of the \(U_\gamma\)'s, so that they define a global Riemannian + metric \(g\) in \(\coprod_{\eta \in H^1(I, M)} H^0(\eta^* TM)\). + + Furthermore, given \(\gamma \in {C'}^\infty(I, M)\) and \(X, Y \in + H^0(\gamma^* TM)\) by construction we have + \[ + g_\gamma(X, Y) + = g_0^\gamma(X, Y) + = \int_0^1 \langle (d \exp)_0 X_t, (d \exp)_0 Y_t \rangle \; \dt + = \int_0^1 \langle X_t, Y_t \rangle \; \dt + = \langle X, Y \rangle_0 + \] +\end{proof} + +\begin{proposition}\label{thm:partial-is-smooth-sec} + The map + \begin{align*} + \partial : H^1(I, M) & \to \coprod_{\gamma} H^0\gamma^* TM \\ + \gamma & \mapsto \dot\gamma + \end{align*} + is a smooth section of \(\coprod_{\gamma \in H^1(I, M)} H^0(\gamma^* TM) \to + H^1(I, M)\). +\end{proposition} + +\begin{proposition}\label{thm:covariant-derivative-h0} + Denote by \(\nabla^0 : \mathfrak{X}(H^1(I, M)) \times + \Gamma\left(\coprod_\gamma H^0(\gamma^* TM)\right) \to + \Gamma\left(\coprod_{\gamma} H^0(\gamma^* TM)\right)\) the Levi-Civita + connection of \(\coprod_\gamma H^0(\gamma^* TM)\). The map + \begin{align*} + \mathfrak{X}(H^1(I, M)) + & \to \Gamma\left(\coprod_\gamma H^0(\gamma^* TM)\right) \\ + \xi + & \mapsto \nabla_\xi^0 \partial + \end{align*} + is such that + \[ + (\nabla_X^0 \partial)_\gamma + = \nabla_{\frac\dd\dt} X + = \frac\nabla\dt X + \] + for all \(\gamma \in {C'}^\infty(I, M)\) and \(X \in H^1(\gamma^* TM) \cong + T_\gamma H^1(I, M)\). Given some arbitrary \(\gamma \in H^1(I, M)\) and \(X + \in H^1(\gamma^* TM)\) we therefore denote \((\nabla_X^0 \partial)_\gamma\) + simply by \(\frac\nabla\dt X\). +\end{proposition} + +The proof of this last two propositions was deemed too technical to be included +in here, but see proposition 2.3.16 and 2.3.18 of \cite{klingenberg}. We may +now finally describe the canonical Riemannian metric of \(H^1(I, M)\). + +\begin{definition}\label{def:h1-metric} + Given \(\gamma \in H^1(I, M)\) and \(X, Y \in H^1(\gamma^* TM)\), let + \[ + \langle X, Y \rangle_1 + = \langle X, Y \rangle_0 + + \left\langle \frac\nabla\dt X, \frac\nabla\dt Y \right\rangle_0 + \] +\end{definition} +At this point it should be obvious that definition~\ref{def:h1-metric} does +indeed endow \(H^1(I, M)\) with the structure of a Riemannian manifold: the +inner products \(\langle \, , \rangle_1 : H^1(\gamma^* TM) \times H^1(\gamma^* +TM) \to \RR\) may be glued together into a single positive-definite +section \(\langle \, , \rangle_1 \in \Gamma( \Sym^2 \coprod_\gamma H^1(\gamma^* +TM))\) -- whose smoothness follows from +theorem~\ref{thm:h0-has-metric-extension}, +proposition~\ref{thm:partial-is-smooth-sec} and +proposition~\ref{thm:covariant-derivative-h0} -- which is then mapped to a +positive-definite section of \(\Sym^2 T H^1(I, M)\) by the canonical +isomorphism \(\coprod_\gamma H^1(\gamma^* TM) \isoto T H^1(I, M)\).