- Commit
- 8a220889310ccfa1fcbee93869e69aad8a08f5d0
- Parent
- d16c8af5af636eea51cbaac727b9b277e2e32c84
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Fixed the proof that the inclusions of section spaces are continuous
Riemannian Geometry course project on the manifold H¹(I, M) of class H¹ curves on a Riemannian manifold M and its applications to the geodesics problem
Fixed the proof that the inclusions of section spaces are continuous
1 file changed, 22 insertions, 16 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/structure.tex | 38 | 22 | 16 |
diff --git a/sections/structure.tex b/sections/structure.tex @@ -176,31 +176,37 @@ find\dots \end{equation} Now given \(\xi \in H^1(E)\) fix \(t_0, t_1 \in I\) with \(\norm{\xi}_\infty - = \norm{\xi_{t_1}}\). Then - \[ + = \norm{\xi_{t_1}}\) and \(\norm{\xi_{t_0}} \le \norm{\xi}_0\). If \(t_0 < + t_1\) then + \begin{equation}\label{eq:one-norm-le-sqrt-two-infty-norm} \begin{split} \norm{\xi}_\infty^2 & = \norm{\xi_{t_0}}^2 - + \int_{t_0}^{t_1} \frac{\dd}{\dd s} \norm{\xi_s}^2 \; \dd s \\ + + \int_{t_0}^{t_1} \frac{\dd}\dt \norm{\xi_t}^2 \; \dt \\ + & \le \norm{\xi}_0^2 + + \int_{t_0}^{t_1} \frac{\dd}\dt \norm{\xi_t}^2 \; \dt \\ \text{(\(\nabla\) is compatible with the metric)} - & = \norm{\xi_{t_0}}^2 + \int_{t_0}^{t_1} - 2 \left\langle \xi_s, \nabla_{\frac\dd{\dd s}} \xi_s \right\rangle - \; \dd s \\ + & = \norm{\xi}_0^2 + \int_{t_0}^{t_1} + 2 \left\langle \xi_t, \nabla_{\frac\dd\dt} \xi_t \right\rangle + \; \dt \\ \text{(Cauchy-Schwarz)} - & \le \norm{\xi_{t_0}}^2 + \int_0^1 - 2 \norm{\xi_s} \cdot \norm{\nabla_{\frac\dd{\dd s}} \xi_s} \; \dd s \\ - & \le \norm{\xi}_\infty^2 - + \int_0^1 \norm{\xi_s}^2 + \norm{\nabla_{\frac\dd\dt} \xi_s}^2 - \; \dd s \\ - & \le \norm{\xi}_\infty^2 - + \norm{\xi}_0^2 + \norm{\nabla_{\frac\dd\dt} \xi}_0^2 \\ - % TODO: This is actually wrong. Fix this. - \text{(because of equation (\ref{eq:zero-norm-le-infty-norm}))} + & \le \norm{\xi}_0^2 + \int_0^1 + 2 \norm{\xi_t} \cdot \norm{\nabla_{\frac\dd\dt} \xi_t} \; \dt \\ & \le \norm{\xi}_0^2 + + \int_0^1 \norm{\xi_t}^2 + \norm{\nabla_{\frac\dd\dt} \xi_t}^2 + \; \dt \\ + & = \norm{\xi}_0^2 + \norm{\xi}_0^2 + \norm{\nabla_{\frac\dd\dt} \xi}_0^2 \\ & \le 2 \norm{\xi}_1^2 \end{split} - \] + \end{equation} + + Similarly, if \(t_0 > t_1\) then by inverting the orientation of the curve + \(\gamma\) we can see that \(\norm{\xi}_\infty < \sqrt{2} \norm{\xi}_0\). + More precisely, if we set \(\eta(t) = \gamma(1 - t)\) and \(\xi' \in + H^1(\eta^* TM)\) with \(\xi'_t = \xi_{1 - t}\) then \(\norm{\xi}_\infty = + \norm{\xi'}_\infty \le \sqrt{2} \norm{\xi'}_1 = \sqrt{2} \norm{\xi}_1\) + because of equation (\ref{eq:one-norm-le-sqrt-two-infty-norm}). \end{proof} \begin{note}