- Commit
- f947f7134d29840c251d77f18b799dc3ce1b0618
- Parent
- e206292987e0e31557885d09229cfb2bb77c9b49
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Changed the notation for the charts of the tanget bundle of H¹(I, M)
Riemannian Geometry course project on the manifold H¹(I, M) of class H¹ curves on a Riemannian manifold M and its applications to the geodesics problem
Changed the notation for the charts of the tanget bundle of H¹(I, M)
1 file changed, 10 insertions, 10 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/structure.tex | 20 | 10 | 10 |
diff --git a/sections/structure.tex b/sections/structure.tex @@ -392,19 +392,19 @@ extended to a canonical isomorphism of vector bundles, as seen in\dots \begin{proof} Note that the sets \(H^1(W_\gamma) \times T_\gamma H^1(I, M)\) are precisely - the images of the canonical charts + the images of the charts \[ - \varphi_\gamma : - \varphi_\gamma^{-1}(H^1(W_\gamma) \times T_\gamma H^1(I, M)) + \varphi_\gamma^{-1} : + \varphi_\gamma(H^1(W_\gamma) \times T_\gamma H^1(I, M)) \subset T H^1(I, M) \to H^1(W_\gamma) \times T_\gamma H^1(I, M) \] - of \(T H^1(I, M)\) -- i.e. the charts given by\footnote{Once more, we use the + of \(T H^1(I, M)\) given by\footnote{Once more, we use the canonical identification $T_X H^1(W_\gamma) \cong H^1(\gamma^* TM)$ to apply the vector $\phi_\gamma(Y) \in H^1(\gamma^* TM)$ to $(d \exp_\gamma)_X : T_X H^1(W_\gamma) \to T_{\exp_\gamma(X)} H^1(I, M)$.} \begin{align*} - \varphi_\gamma^{-1} : H^1(W_\gamma) \times T_\gamma H^1(I, M) + \varphi_\gamma : H^1(W_\gamma) \times T_\gamma H^1(I, M) & \to T H^1(I, M) \\ (X, Y) & \mapsto (d \exp_\gamma)_X \phi_\gamma(Y) \end{align*} @@ -412,16 +412,16 @@ extended to a canonical isomorphism of vector bundles, as seen in\dots By composing charts we get a fiber-preserving, fiber-wise linear diffeomorphism \[ - \varphi_\gamma^{-1}(H^1(W_\gamma) \times T_\gamma H^1(I, M)) + \varphi_\gamma(H^1(W_\gamma) \times T_\gamma H^1(I, M)) \subset T H^1(I, M) \isoto \psi_{1, \gamma}(H^1(W_\gamma) \times H^1(\gamma^* TM)), \] - which takes \(\varphi^{-1}(X, Y) \in T_{\exp_\gamma(X)} H^1(I, M)\) to - \(\psi_{1, \gamma}(X, \phi_\gamma(Y)) \in H^1(\exp_\gamma(X)^* TM)\). With - enough patience, one can deduce from the fact that \(\varphi_\gamma\) and + which takes \(\varphi(X, Y) \in T_{\exp_\gamma(X)} H^1(I, M)\) to \(\psi_{1, + \gamma}(X, \phi_\gamma(Y)) \in H^1(\exp_\gamma(X)^* TM)\). With enough + patience, one can deduce from the fact that \(\varphi_\gamma^{-1}\) and \(\psi_{1, \gamma}^{-1}\) are charts that these maps agree in the - intersections of the open subsets \(\varphi_\gamma^{-1}(H^1(W_\gamma) \times + intersections of the open subsets \(\varphi_\gamma(H^1(W_\gamma) \times T_\gamma H^1(I, M))\), so that they may be glued together into a global smooth map \(\Phi : T H^1(I, M) \to \coprod_{\eta \in H^1(I, M)} H^1(\eta^* TM)\).