- Commit
- e16ac8ccf65ac4d7e5f306a76181c7eae9efaa9c
- Parent
- 804e5dda60c1e2d14635ebe5951b0f8666d11608
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Updated the labels and the description of the picture of quaternion rotations
A collection of TikZ drawings and other images 🖌️
Updated the labels and the description of the picture of quaternion rotations
1 file changed, 7 insertions, 5 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | quaternion-rotation.tikz | 12 | 7 | 5 |
diff --git a/quaternion-rotation.tikz b/quaternion-rotation.tikz @@ -1,15 +1,17 @@ -% This drawing represents the correspondance between conjugation by unitary -% quaternions and rotations in the 3-dimensional euclidian space +% This drawing represents the correspondance between conjugation by pure +% unitary quaternions and rotations in the 3-dimensional euclidian space: the +% coordinates of a unitary quaternion p number with zero real cofficient induce +% a line through the origin in the 3-dimensional enclidian space, and +% conjugation by cos t + p sin t acts as rotation by 2 t around this axis. % Copyright Pablo (C) 2021 \begin{tikzpicture} % The rotation axis \begin{scope}[rotate=-60] % The axis - \draw[->] (0, 0) -- (0, 2.5) node[right]{$\mathrm{Im}\,q$}; + \draw[->] (0, 0) -- (0, 2.5) node[right]{$p$}; % The rotation - \draw[->] (0.43, 2) node[right]{$\theta=\frac{\arccos(\mathrm{Re}\,q)}{2}$} - arc (30:360:0.5 and 0.25); + \draw[->] (0.43, 2) node[right]{$2 \theta$} arc (30:360:0.5 and 0.25); % The origin and the intersection of ratation axis with the unit sphere \filldraw (0, 0) circle (1pt) (0, 1) circle (1pt);