- Commit
- 08ae3830561549c71f98cebb4732a52f68aae30f
- Parent
- 871dcf70c774698e8c5169d0e3a43f96bd96707d
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Standardized the notation for the dot action
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Standardized the notation for the dot action
1 file changed, 3 insertions, 3 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/coherent-families.tex | 6 | 3 | 3 |
diff --git a/sections/coherent-families.tex b/sections/coherent-families.tex @@ -75,7 +75,7 @@ combinatorial counterpart. associated with the weight \(\lambda\)}. \end{definition} -% TODO: Define the dot-action beforehand +% TODO: Cite the definition of the dot action \begin{theorem}[Harish-Chandra] Given \(\lambda, \mu \in \mathfrak{h}^*\), \(\chi_\lambda = \chi_\mu\) if, and only if \(\mu \in W \bullet \lambda\). All algebra homomorphism @@ -137,7 +137,7 @@ Example~\ref{ex:sp-canonical-basis}. ) \end{align*} is \(W\)-equivariant bijection, where the action \(W \cong S_n \ltimes - (\mathbb{Z}/2\mathbb{Z})^n\) on \(\mathfrak{h}^*\) is given by the dot-action + (\mathbb{Z}/2\mathbb{Z})^n\) on \(\mathfrak{h}^*\) is given by the dot action and the action of \(W\) on \(K^n\) is given my permuting coordinates and multiplying them by \(\pm 1\). A weight \(\lambda \in \mathfrak{h}^*\) satisfies the conditions of Lemma~\ref{thm:sp-bounded-weights} if, and @@ -217,7 +217,7 @@ Example~\ref{ex:sl-canonical-basis}. ) \end{align*} is \(W\)-equivariant bijection, where the action \(W \cong S_n\) on - \(\mathfrak{h}^*\) is given by the dot-action and the action of \(W\) on the + \(\mathfrak{h}^*\) is given by the dot action and the action of \(W\) on the space of \(\mathfrak{sl}_n\)-sequences is given my permuting coordinates. A weight \(\lambda \in \mathfrak{h}^*\) satisfies the conditions of Lemma~\ref{thm:sl-bounded-weights} if, and only if the diferences between all