lie-algebras-and-their-representations

Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules

Commit
095e6b717ea737acd0da44ffdb4baf2cd107503c
Parent
07e9a93999d5b907999cc1840e16c24bd75dec7a
Author
Pablo <pablo-escobar@riseup.net>
Date

Removed an example

Diffstat

1 file changed, 0 insertions, 4 deletions

Status File Name N° Changes Insertions Deletions
Modified sections/introduction.tex 4 0 4
diff --git a/sections/introduction.tex b/sections/introduction.tex
@@ -380,10 +380,6 @@ also share structural features with groups. For example\dots
 \end{definition}
 
 \begin{example}
-  Every nilpotent Lie algebra if solvable.
-\end{example}
-
-\begin{example}
   Let \(G\) be a connected affine algebraic \(K\)-group and \(\mathfrak{g}\) be
   its Lie algebra. Then \(G\) is nilpotent if, and only if \(\mathfrak{g}\) is.
 \end{example}