- Commit
- 09bbf643742c75fee40c6e0db1d1e5817a9359ae
- Parent
- 1d71b805f37105f3a65c615550f3ad2fe849febb
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Fixed some typos
Added missing periods
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Fixed some typos
Added missing periods
1 file changed, 4 insertions, 4 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/mathieu.tex | 8 | 4 | 4 |
diff --git a/sections/mathieu.tex b/sections/mathieu.tex @@ -307,13 +307,13 @@ characterizations of cuspidal modules. Let \(M\) be a simple weight \(\mathfrak{g}\)-module. The following conditions are equivalent. \begin{enumerate} - \item \(M\) is cuspidal + \item \(M\) is cuspidal. \item \(F_\alpha\) acts injectively on \(M\) for all \(\alpha \in \Delta\) -- this is what is usually referred - to as a \emph{dense} module in the literature + to as a \emph{dense} module in the literature. \item The support of \(M\) is precisely one \(Q\)-coset -- this is what is usually referred to as a \emph{torsion-free} module in the - literature + literature. \end{enumerate} \end{corollary} @@ -446,7 +446,7 @@ families}. \begin{enumerate} \item \(\dim \mathcal{M}_\lambda = d\) for \emph{all} \(\lambda \in \mathfrak{h}^*\) -- i.e. \(\operatorname{supp}_{\operatorname{ess}} - \mathcal{M} = \mathfrak{h}^*\) + \mathcal{M} = \mathfrak{h}^*\). \item For any \(u \in \mathcal{U}(\mathfrak{g})\) in the centralizer\footnote{The notation $\mathcal{U}(\mathfrak{g})_0$ for the centralizer of $\mathfrak{h}$ in $\mathcal{U}(\mathfrak{g})$ comes from