- Commit
- 0cda277464d901b72135fb7e2f092c3c41d1a6c0
- Parent
- 41dad6acc9353c9c8929cb6362656e1effdca186
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Added a proof of the fact that quotients of weight modules are weight modules
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Added a proof of the fact that quotients of weight modules are weight modules
1 file changed, 34 insertions, 2 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/mathieu.tex | 36 | 34 | 2 |
diff --git a/sections/mathieu.tex b/sections/mathieu.tex @@ -21,8 +21,6 @@ representation of a reductive Lie algebra is a weight module. \end{example} -% TODO: Is every quotient of a weight module a weight module too? -% TODO: I think so! \begin{example} Proposition~\ref{thm:verma-is-weight-mod} and proposition~\ref{thm:max-verma-submod-is-weight} imply that the Verma module @@ -32,6 +30,40 @@ is a weight module. \end{example} +\begin{example} + Given a weight module \(V\), a submodule \(W \subset V\) and \(\lambda \in + \mathfrak{h}^*\), \(\left(\mfrac{V}{W}\right)_\lambda = \mfrac{V_\lambda}{W} + \cong \mfrac{V_\lambda}{W_\lambda}\). In particular, + \[ + \mfrac{V}{W} + = \bigoplus_{\lambda \in \mathfrak{h}^*} \left(\mfrac{V}{W}\right)_\lambda + \] + is a weight module. It is clear that \(\mfrac{V_\lambda}{W} \subset + \left(\mfrac{V}{W}\right)_\lambda\). To see that \(\mfrac{V_\lambda}{W} = + \left(\mfrac{V}{W}\right)_\lambda\), we remark that \(V_\lambda \cong V + \otimes_{\mathcal{U}(\mathfrak{h})} + \mfrac{\mathcal{U}(\mathfrak{h})}{\mathfrak{m}_\lambda}\) as + \(\mathfrak{h}\)-modules, where \(\mathfrak{m}_\lambda \normal + \mathcal{U}(\mathfrak{h})\) is the left ideal generated by the elements \(H - + \lambda(H)\), \(H \in \mathfrak{h}\). Likewise + \(\left(\mfrac{V}{W}\right)_\lambda \cong \mfrac{V}{W} + \otimes_{\mathcal{U}(\mathfrak{h})} + \mfrac{\mathcal{U}(\mathfrak{h})}{\mathfrak{m}_\lambda}\) and the diagram + \begin{center} + \begin{tikzcd} + V_\lambda \arrow{d} \arrow{r}{\pi} & + \left(\mfrac{V}{W}\right)_\lambda \arrow{d} \\ + V \otimes_{\mathcal{U}(\mathfrak{h})} + \mfrac{\mathcal{U}(\mathfrak{h})}{\mathfrak{m}_\lambda} + \arrow[swap]{r}{\pi \otimes \operatorname{id}} & + \mfrac{V}{W} \otimes_{\mathcal{U}(\mathfrak{h})} + \mfrac{\mathcal{U}(\mathfrak{h})}{\mathfrak{m}_\lambda} + \end{tikzcd} + \end{center} + commutes, so that the projection \(V_\lambda \to + \left(\mfrac{V}{W}\right)_\lambda\) is surjective. +\end{example} + \begin{definition} A subalgebra \(\mathfrak{p} \subset \mathfrak{g}\) is called \emph{parabolic} if \(\mathfrak{b} \subset \mathfrak{p}\).