- Commit
- 41dad6acc9353c9c8929cb6362656e1effdca186
- Parent
- ca7dc4c8fc87b916bebe3003c113052a5c0f9083
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Minor change in notation
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Minor change in notation
1 file changed, 4 insertions, 4 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/mathieu.tex | 8 | 4 | 4 |
diff --git a/sections/mathieu.tex b/sections/mathieu.tex @@ -212,12 +212,12 @@ \end{proof} \begin{theorem}[Mathieu] - Let \(\mathcal{M}\) be an irreducible coherent family and \(\mu \in + Let \(\mathcal{M}\) be an irreducible coherent family and \(\lambda \in \mathfrak{h}^*\). The following conditions are equivalent. \begin{enumerate} - \item \(\mathcal{M}[\mu]\) is irreducible. - \item \(F_\alpha\!\restriction_{\mathcal{M}[\mu]}\) is injective for all + \item \(\mathcal{M}[\lambda]\) is irreducible. + \item \(F_\alpha\!\restriction_{\mathcal{M}[\lambda]}\) is injective for all \(\alpha \in \Delta\). - \item \(\mathcal{M}[\mu]\) is cuspidal. + \item \(\mathcal{M}[\lambda]\) is cuspidal. \end{enumerate} \end{theorem}