lie-algebras-and-their-representations

Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules

Commit
134990e9507c34cd77dd33b3459f80bb9acd919e
Parent
2a648647bfe61c5dfef0df99f08d713d047c110b
Author
Pablo <pablo-escobar@riseup.net>
Date

Added a drawing to the section on sl2

Also changed the sizes of some weight diagrams of sl3 so that they would fit in the pages

Diffstat

1 file changed, 18 insertions, 9 deletions

Status File Name N° Changes Insertions Deletions
Modified sections/sl2-sl3.tex 27 18 9
diff --git a/sections/sl2-sl3.tex b/sections/sl2-sl3.tex
@@ -173,6 +173,19 @@ self-evident: we have just provided a complete description of the action of
   left-most eigenvalue of \(h\) is precisely \(n - 2 (m - 1) = -n\).
 \end{proof}
 
+Visually, the situation it thus
+\begin{center}
+  \begin{tikzcd}
+    V_{-n}        \arrow[bend left=60]{r}{e}
+    & V_{- n + 2} \arrow[bend left=60]{r}{e} \arrow[bend left=60]{l}{f}
+    & V_{- n + 4} \arrow[bend left=60]{r}    \arrow[bend left=60]{l}{f}
+    & \cdots      \arrow[bend left=60]{r}    \arrow[bend left=60]{l}
+    & V_{n - 4}   \arrow[bend left=60]{r}{e} \arrow[bend left=60]{l}
+    & V_{n - 2}   \arrow[bend left=60]{r}{e} \arrow[bend left=60]{l}{f}
+    & V_n                                    \arrow[bend left=60]{l}{f}
+  \end{tikzcd}
+\end{center}
+
 Corollary~\ref{thm:sl2-find-weights} can be used to find the eigenvalues of the
 action of \(h\) on an arbitrary finite-dimensional
 \(\mathfrak{sl}_2(K)\)-module. Namely, if \(V\) and \(W\) are representations
@@ -350,7 +363,7 @@ Visually we may draw
 
 \begin{figure}[h]
   \centering
-  \begin{tikzpicture}[scale=2.5]
+  \begin{tikzpicture}[scale=2]
     \begin{rootSystem}{A}
       \filldraw[black] \weight{0}{0} circle (.5pt);
       \node[black, above right] at \weight{0}{0} {\small$0$};
@@ -396,7 +409,7 @@ For instance \(\mathfrak{sl}_3(K)_{\alpha_1 - \alpha_3}\) will act on the
 adjoint representation of \(\mathfrak{sl}_3(K)\) via
 \begin{figure}[h]
   \centering
-  \begin{tikzpicture}[scale=2.5]
+  \begin{tikzpicture}[scale=2]
     \begin{rootSystem}{A}
       \wt[black]{0}{0}
       \wt[black]{-1}{2}
@@ -655,11 +668,9 @@ reproduce these steps in the context of \(\mathfrak{sl}_3(K)\) by fixing a
 direction in the plane an considering the weight lying the furthest in that
 direction. 
 
-\newpage 
-
 For instance, let's say we fix the direction
 \begin{center}
-  \begin{tikzpicture}[scale=2.5]
+  \begin{tikzpicture}[scale=2]
     \begin{rootSystem}{A}
       \wt[black]{0}{0}
       \wt[black]{-1}{2}
@@ -819,8 +830,6 @@ picture is now
   \end{tikzpicture}
 \end{center}
 
-\newpage
-
 Needless to say, we could keep applying this method to the weights at the ends
 of our string, arriving at
 \begin{center}
@@ -1106,7 +1115,7 @@ representation turns out to be quite simple.
   \(\alpha_1\), \(\alpha_2\) and \(\alpha_3\) respectively. Hence the weight
   diagram of \(K^3\) is
   \begin{center}
-    \begin{tikzpicture}[scale=2.5]
+    \begin{tikzpicture}[scale=2]
       \AutoSizeWeightLatticefalse
       \begin{rootSystem}{A}
         \weightLattice{2}
@@ -1126,7 +1135,7 @@ representation turns out to be quite simple.
   \mathfrak{h}\), so that the weights of \((K^3)^*\) are precisely the
   opposites of the weights of \(K^3\). In other words,
   \begin{center}
-    \begin{tikzpicture}[scale=2.5]
+    \begin{tikzpicture}[scale=2]
       \AutoSizeWeightLatticefalse
       \begin{rootSystem}{A}
         \weightLattice{2}