- Commit
- 212b52e177249cbc5364df41d0674b4ad9cbb6ec
- Parent
- fc393aa5229b8b79c6ddd6939f92b93dc7d87d39
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Fixed some typos
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Fixed some typos
1 file changed, 3 insertions, 3 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/coherent-families.tex | 6 | 3 | 3 |
diff --git a/sections/coherent-families.tex b/sections/coherent-families.tex @@ -291,15 +291,15 @@ Example~\ref{ex:sp-canonical-basis}. Also fix \(\rho = \sfrac{1}{2} \beta_1 + \begin{align*} \mathfrak{h}^* & \to K^n \\ \lambda & - \mapsto (\kappa(\epsilon_1, \lambda), \ldots, \kappa(\epsilon_1, \lambda)) + \mapsto (\kappa(\epsilon_1, \lambda), \ldots, \kappa(\epsilon_n, \lambda)) \end{align*} is equivariant with respect to the natural action of \(W\) on \(\mathfrak{h}^*\). But this also clear from the isomorphism \(W \cong S_n \ltimes (\mathbb{Z}/2\mathbb{Z})^n\), as described in Example~\ref{ex:sp-weyl-group}: \((\sigma_i, (\bar 0, \ldots, \bar 0)) = \sigma_{\beta_i}\) permutes \(\epsilon_i\) and \(\epsilon_{i + 1}\) for \(i < - n\) and \((1, (\bar 0, \ldots, \bar 0, \bar 1) = \sigma_{\beta_n}\) flips the - sign of \(\epsilon_n\). Hence \(m(\sigma_{\beta_i} \cdot \epsilon_j) = + n\) and \((1, (\bar 0, \ldots, \bar 0, \bar 1)) = \sigma_{\beta_n}\) flips + the sign of \(\epsilon_n\). Hence \(m(\sigma_{\beta_i} \cdot \epsilon_j) = \sigma_{\beta_i} \cdot m(\epsilon_j)\) for all \(i\) and \(j\). Since \(W\) is generated by the \(\sigma_{\beta_i}\), this implies that the required map is equivariant.