lie-algebras-and-their-representations

Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules

Commit
21f35a68d42446f55f2dc1917db31746e0fdc48c
Parent
391dfe0dd595bd515e2ec712213ac2106300bd98
Author
Pablo <pablo-escobar@riseup.net>
Date

Fixed a typo

Diffstat

1 file changed, 1 insertion, 1 deletion

Status File Name N° Changes Insertions Deletions
Modified sections/mathieu.tex 2 1 1
diff --git a/sections/mathieu.tex b/sections/mathieu.tex
@@ -797,7 +797,7 @@
   weight spaces have maximal dimension inside of \(\operatorname{Ext}(V)\). In
   particular, it follows from proposition~\ref{thm:centralizer-multiplicity}
   that \(\operatorname{Ext}(V)_\lambda = V_\lambda\) is a simple
-  \(C_{\mathcal{U}(\mathfrak{h})}(\mathfrak{h})\)-module for some \(\lambda \in
+  \(\mathcal{U}(\mathfrak{g})_0\)-module for some \(\lambda \in
   \operatorname{supp} V\).
 
   As for the uniqueness of \(\operatorname{Ext}(V)\), fix some other completely