lie-algebras-and-their-representations

Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules

Commit
271ee36062a38d669ece51f86a26fd661a75d01a
Parent
52da57474e9930eff6e57ad6c35bbe42da4660cb
Author
Pablo <pablo-escobar@riseup.net>
Date

Minor tweak in notation

Diffstat

1 file changed, 2 insertions, 2 deletions

Status File Name N° Changes Insertions Deletions
Modified sections/introduction.tex 4 2 2
diff --git a/sections/introduction.tex b/sections/introduction.tex
@@ -917,8 +917,8 @@ define\dots
 \begin{example}\label{ex:sl2-polynomial-subrep}
   Let \(K[x, y]\) be the \(\mathfrak{sl}_2(K)\)-module as in
   example~\ref{ex:sl2-polynomial-rep}. Since \(e\), \(f\) and \(h\) all
-  preserve the degree of monomials, the space \(K[x, y]^{(n)} = \bigoplus_{k = 0}^n
-  K x^{n - k} y^k\) of homogeneous polynomials of degree \(n\) is a
+  preserve the degree of monomials, the space \(K[x, y]^{(n)} = \bigoplus_{k +
+  \ell = n} K x^k y^\ell\) of homogeneous polynomials of degree \(n\) is a
   finite-dimensional subrepresentation of \(K[x, y]\).
 \end{example}