- Commit
- 271ee36062a38d669ece51f86a26fd661a75d01a
- Parent
- 52da57474e9930eff6e57ad6c35bbe42da4660cb
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Minor tweak in notation
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Minor tweak in notation
1 file changed, 2 insertions, 2 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/introduction.tex | 4 | 2 | 2 |
diff --git a/sections/introduction.tex b/sections/introduction.tex @@ -917,8 +917,8 @@ define\dots \begin{example}\label{ex:sl2-polynomial-subrep} Let \(K[x, y]\) be the \(\mathfrak{sl}_2(K)\)-module as in example~\ref{ex:sl2-polynomial-rep}. Since \(e\), \(f\) and \(h\) all - preserve the degree of monomials, the space \(K[x, y]^{(n)} = \bigoplus_{k = 0}^n - K x^{n - k} y^k\) of homogeneous polynomials of degree \(n\) is a + preserve the degree of monomials, the space \(K[x, y]^{(n)} = \bigoplus_{k + + \ell = n} K x^k y^\ell\) of homogeneous polynomials of degree \(n\) is a finite-dimensional subrepresentation of \(K[x, y]\). \end{example}