- Commit
- 30591dc47f8faefd7cb7b0903b0b6e056bf50942
- Parent
- dba0653482d86747f1446e39262fb9b0506aba4c
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Fixed a typo
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Fixed a typo
1 file changed, 3 insertions, 2 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/introduction.tex | 5 | 3 | 2 |
diff --git a/sections/introduction.tex b/sections/introduction.tex @@ -442,8 +442,8 @@ \mathfrak{g}}{I}\). \begin{center} \begin{tikzcd} - T \mathfrak{g} \arrow{dr}{\bar{g}} & \\ - \mathcal{U}(\mathfrak{g}) \uar \rar[swap]{g} & A + T \mathfrak{g} \rar{g} \dar & A \\ + \mathcal{U}(\mathfrak{g}) \arrow[swap]{ur}{\bar{g}} & \end{tikzcd} \end{center} @@ -530,6 +530,7 @@ \operatorname{Ind}_{\mathfrak{h}}^{\mathfrak{g}}\). \end{proposition} +% TODO: Define the algebra of differential operators of a given algebra \begin{proposition} Let \(G\) be a Lie group and \(\mathfrak{g}\) be its Lie algebra. Denote by \(\operatorname{Diff}(G)^G\) the algebra of \(G\)-invariant differential