lie-algebras-and-their-representations

Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules

Commit
391ae2aa9fe9a96f0c7166a675c351a1e07391c0
Parent
21f35a68d42446f55f2dc1917db31746e0fdc48c
Author
Pablo <pablo-escobar@riseup.net>
Date

Minor tweak

Diffstat

1 file changed, 3 insertions, 4 deletions

Status File Name N° Changes Insertions Deletions
Modified sections/mathieu.tex 7 3 4
diff --git a/sections/mathieu.tex b/sections/mathieu.tex
@@ -384,10 +384,9 @@
   \(B_\lambda\) has maximal rank \(d^2\). We now show that \(U\) is
   Zariski-open. First, notice that
   \[
-    U = \bigcup_{
-          \substack{W \subset \mathcal{U}(\mathfrak{g})_0 \\ \dim W = d^2}
-        }
-      U_W,
+    U =
+    \bigcup_{\substack{W \subset \mathcal{U}(\mathfrak{g})_0 \\ \dim W = d^2}}
+    U_W,
   \]
   where \(U_W = \{\lambda \in \mathcal{U}(\mathfrak{g})_0 : \operatorname{rank}
   B_\lambda\!\restriction_W = d^2 \}\).