- Commit
- 391ae2aa9fe9a96f0c7166a675c351a1e07391c0
- Parent
- 21f35a68d42446f55f2dc1917db31746e0fdc48c
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Minor tweak
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Minor tweak
1 file changed, 3 insertions, 4 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/mathieu.tex | 7 | 3 | 4 |
diff --git a/sections/mathieu.tex b/sections/mathieu.tex @@ -384,10 +384,9 @@ \(B_\lambda\) has maximal rank \(d^2\). We now show that \(U\) is Zariski-open. First, notice that \[ - U = \bigcup_{ - \substack{W \subset \mathcal{U}(\mathfrak{g})_0 \\ \dim W = d^2} - } - U_W, + U = + \bigcup_{\substack{W \subset \mathcal{U}(\mathfrak{g})_0 \\ \dim W = d^2}} + U_W, \] where \(U_W = \{\lambda \in \mathcal{U}(\mathfrak{g})_0 : \operatorname{rank} B_\lambda\!\restriction_W = d^2 \}\).