- Commit
- ca7dc4c8fc87b916bebe3003c113052a5c0f9083
- Parent
- 650a27168ca5d4a2b0b1365554febe4a4671be3b
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Removed unnecessary whitespace
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Removed unnecessary whitespace
1 file changed, 4 insertions, 4 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/mathieu.tex | 8 | 4 | 4 |
diff --git a/sections/mathieu.tex b/sections/mathieu.tex @@ -142,7 +142,7 @@ % including it in here \begin{proposition} Any coherent family \(\mathcal{M}\) has finite length as a - \(\mathfrak{g}\)-module. + \(\mathfrak{g}\)-module. \end{proposition} % TODO: Add a proof! @@ -182,9 +182,9 @@ subquotient of \(\mathcal{M}\). Since \(V\) is irreducible, it can be realized as the quotient of consecutive terms of a composition series \(0 = \mathcal{M}_0 \subset \mathcal{M}_1 \subset \cdots \subset \mathcal{M}_n = - \mathcal{M}\). But + \mathcal{M}\). But \[ - \operatorname{Ext}(V) + \operatorname{Ext}(V) \cong \mathcal{M}^{\operatorname{ss}} = \bigoplus_i \mfrac{\mathcal{M}_{i + 1}}{\mathcal{M}_i}, \] @@ -203,7 +203,7 @@ \] so that \(V_\mu\) is a \(C_{\mathcal{U}(\mathfrak{g})}(\mathfrak{h})\)-submodule of - \(\operatorname{Ext}(V)_\mu\). + \(\operatorname{Ext}(V)_\mu\). Since \(V\) is cuspidal and \(\mu \in \lambda + Q\), \(V_\mu \ne 0\) and hence \(V_\mu = \operatorname{Ext}(V)_\mu\) -- because