- Commit
- 53685018a7e8166334268bf10e295835b8ff70f5
- Parent
- 5d0dff68019f87fae721832b54408379326fc82f
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Added notes on the intuition behind a proof
Also fixed a typo
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Added notes on the intuition behind a proof
Also fixed a typo
2 files changed, 50 insertions, 10 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | preamble.tex | 19 | 19 | 0 |
Modified | sections/sl2-sl3.tex | 41 | 31 | 10 |
diff --git a/preamble.tex b/preamble.tex @@ -175,3 +175,22 @@ % A normal subobject in a pointed cathegory \newcommand{\normal}{\triangleleft} + +% Command for marking a node inside a matrix +\newcommand{\tm}[2]{% + \tikz[overlay,remember picture,baseline] \node [anchor=base] (#1) {$#2$};% +} + +% Command for drawing a vertical line between nodes in a matrix +\newcommand{\DrawVLine}[3][]{% + \begin{tikzpicture}[overlay,remember picture] + \draw[shorten <=0.3ex, #1] (#2.north) -- (#3.south); + \end{tikzpicture} +} + +% Command for drawing a horizontal line between nodes in a matrix +\newcommand{\DrawHLine}[3][]{% + \begin{tikzpicture}[overlay,remember picture] + \draw[shorten <=0.2em, #1] (#2.west) -- (#3.east); + \end{tikzpicture} +}
diff --git a/sections/sl2-sl3.tex b/sections/sl2-sl3.tex @@ -564,17 +564,41 @@ In general, we find\dots \end{proposition} \begin{proof} - For the first claim, it suffices to notice the map + In effect, if \(i \ne k \ne j\) then \(\mathfrak{s}_{i j}\) is the subalgebra + of matrices whose \(k\)th row and \(k\)th collumn are nil. For instance, if + \(i = 1\) and \(j = 3\) then + \[ + \mathfrak{s}_{1 3} + = \begin{pmatrix} K & 0 & K \\ 0 & 0 & 0 \\ K & 0 & K \end{pmatrix} + \cap \mathfrak{sl}_3(K) + \] + + In this case, the map \begin{align*} - \mathfrak{sl}_2(K) & \to \mathfrak{s}_{i j} \\ - e & \mapsto E_{i j} \\ - f & \mapsto E_{j i} \\ - h & \mapsto [E_{i j}, E_{j i}] + \mathfrak{s}_{1 3} & \to \mathfrak{sl}_2(K) \\ + \begin{pmatrix} a & 0 & b \\ 0 & 0 & 0 \\ c & 0 & -a \end{pmatrix} + & \mapsto + \begin{pmatrix} + a & \tm{topA}{0} & b \\ + \tm{leftA}{0} & 0 & \tm{rightA}{0} \\ + c & \tm{bottomA}{0} & -a + \end{pmatrix} + = \begin{pmatrix} a & b \\ c & -a \end{pmatrix} + \DrawVLine[black, thick, opacity=0.5]{topA}{bottomA} + \DrawHLine[black, thick, opacity=0.5]{leftA}{rightA} \end{align*} - is an isomorphism. + is an isomorphism of Lie algebras. In general, the map + \begin{align*} + \mathfrak{s}_{i j} & \to \mathfrak{sl}_2(K) \\ + E_{i j} & \mapsto e \\ + E_{j i} & \mapsto f \\ + [E_{i j}, E_{j i}] & \mapsto h + \end{align*} + which ``erases the \(k\)th row and the \(k\)th collumn'' of a matrix is an + isomorphism. To see that \(W\) is invariant under the action of \(\mathfrak{s}_{i j}\), it - suffices to notice \(E_{i j}\) and \(E_{j i}\) map \(v \in V_{\lambda + k + suffices to notice \(E_{i j}\) and \(E_{j i}\) map \(v \in V_{\lambda - k (\alpha_i - \alpha_j)}\) to \(E_{i j} v \in V_{\lambda - (k - 1) (\alpha_i - \alpha_j)}\) and \(E_{j i} v \in V_{\lambda - (k + 1) (\alpha_i - \alpha_j)}\). Moreover, @@ -596,9 +620,6 @@ In general, we find\dots a contradiction. \end{proof} -% TODO: Note that the subalgebra s_ij is obtained by "excluding" a given row -% and a given column from the matrices in sl3 - As a first consequence of this, we show\dots \begin{definition}