- Commit
- 5c8594f41c2ffd0270d385a6176afb66e19c8c02
- Parent
- 5f645c01a4c978d3f072a0f92a157854fb4df43f
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Moved the discussion on representations to after the basic results/definitions of Lie algebras
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Moved the discussion on representations to after the basic results/definitions of Lie algebras
1 file changed, 82 insertions, 123 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/introduction.tex | 205 | 82 | 123 |
diff --git a/sections/introduction.tex b/sections/introduction.tex @@ -1,79 +1,5 @@ \chapter{Introduction} -% TODO: Comment on linear actions - -\begin{definition} - Given a group \(G\), a representation of \(G\) over \(K\) is a \(K\)-vector - space endowed with a homomorphism of groups \(\rho : G \to - \operatorname{GL}(V)\). -\end{definition} - -\begin{example} - Given a Lie group \(G\) and representations \(V\) and \(W\) of \(G\), the - spaces \(V \oplus W\), \(V^*\), \(V \otimes W\) and \(\operatorname{Hom}(V, - W)\) are all representations of \(G\), where the action of \(G\) is given by - \begin{align*} - g (v + w) & = g v + g w & - g \cdot f & = f \circ g^{-1} \\ - g (v \otimes w) & = g v \otimes g w & - (g T) v & = g T g^{-1} v - \end{align*} -\end{example} - -% TODO: Define smooth/holomorphic/rational representations - -\begin{definition} - Given a group \(G\) and two representations \(V\) and \(W\) of \(G\), we call - a linear map \(T : V \to W\) \emph{an intertwiner} or \emph{a homomorphism of - representations} if it cummutes with the action of \(G\) in \(V\) and \(W\) - -- i.e. - \begin{center} - \begin{tikzcd} - V \rar{T} \dar[swap]{g} & W \dar{g} \\ - V \rar[swap]{T} & W - \end{tikzcd} - \end{center} - for all \(g \in G\). We denote the space of all intertwiners \(V \to W\) by - \(\operatorname{Hom}_G(V, W)\). -\end{definition} - -\begin{definition} - Given a group \(G\) and a representation \(V\) of \(G\), a subspace \(W - \subset V\) is called \emph{a subrepresentation} if it is stable under the - action of \(G\) -- i.e. \(g w \in W\) for all \(w \in W\) and \(g \in G\). -\end{definition} - -\begin{example} - Given a group \(G\), a representation \(V\) of \(G\) and a subrepresentation - \(W \subset V\), the space \(\mfrac{V}{W}\) has the natural structure of a - representation of \(G\) where - \[ - g (v + W) = g v + W - \] -\end{example} - -\begin{example} - Given a group \(G\) and representations \(V\) and \(W\) of \(G\), the - spaces \(V \wedge W\) and \(V \odot W\) are both representations of \(G\) -- - they are quotients of \(V \otimes W\) by certain subrepresentations. -\end{example} - -\begin{definition} - A representation \(V\) of \(G\) is called \emph{indecomposable} if it is not - isomorphic to the direct sum of two non-zero representations. -\end{definition} - -\begin{definition} - A representation is called \emph{irreducible} if it has no non-zero - subrepresentations. -\end{definition} - -\begin{lemma}[Schur] - Let \(V\) and \(W\) be two irreducible representations of \(\mathfrak{g}\). - and \(T : V \to W\) be an intertwiner. If \(V \not\cong W\) then \(T = 0\). - If \(V = W\) then \(T\) is a scalar operator. -\end{lemma} - \section{Lie Algebras} \begin{definition} @@ -139,7 +65,7 @@ T_1 G\). In particular, \(\mathfrak{g}\) is finite-dimensional. \end{example} -% TODO: Point out this construction "works" for algebraic groups too! +% TODOO: Point out this construction "works" for algebraic groups too! \begin{example} The Lie algebra \(\operatorname{Lie}(\operatorname{GL}_n(K))\) is canonically @@ -167,22 +93,6 @@ \end{align*} \end{example} -\begin{definition} - Given a Lie algebra \(\mathfrak{g}\) over \(K\), a representation \(V\) of - \(\mathfrak{g}\) is a \(K\)-vector space endowed with a homomorphism of Lie - algebras \(\rho : \mathfrak{g} \to \mathfrak{gl}(V)\). -\end{definition} - -\begin{definition} - Given a Lie algebra \(\mathfrak{g}\) and two representations \(V\) and \(W\) - of \(\mathfrak{g}\), we call a linear map \(T : V \to W\) \emph{an - intertwiner} or \emph{a homomorphism of representations} if it cummutes with - the action of \(\mathfrak{g}\) in \(V\) and \(W\). We denote the space of all - intertwiners \(V \to W\) by \(\operatorname{Hom}_{\mathfrak{g}}(V, W)\). -\end{definition} - -% TODO: State the fact that most concepts from the representation theory of -% groups can be translated to representations of algebras % TODO: State that the Lie functor is a functor \begin{theorem}[Lie] @@ -210,37 +120,7 @@ the full subcategory of finite-dimensional Lie algebras over \(K\). \end{theorem} -\begin{proposition}[Lie] - If \(G\) and \(H\) are connected Lie groups with \(G\) simply connected, then - the map \(\operatorname{Hom}(G, H) \to \operatorname{Hom}(\mathfrak{g}, - \mathfrak{h})\) induced by the Lie functor is a bijection. In particular, - given a finite-dimensional real vector space \(V\) there is a natural - bijection \(\operatorname{Hom}(G, \operatorname{GL}(V)) \isoto - \operatorname{Hom}(\mathfrak{g}, \mathfrak{gl}(V))\). -\end{proposition} - -\begin{corollary} - Given a simply connected Lie group \(G\), there is a natural equivalence of - categories \(\mathbf{rep}(G) \isoto \mathfrak{g}\text{-}\mathbf{mod}\) - between the category \(\mathbf{rep}(G)\) of complex smooth representations of - \(G\) and the category \(\mathfrak{g}\text{-}\mathbf{mod}\) of - finite-dimensional real representations of \(\mathfrak{g}\). -\end{corollary} - -% TODO: Point out this holds for algebraic groups too - -\begin{example} - Given a Lie group \(G\) and representations \(V\) and \(W\) of \(G\), the - action in \(\mathfrak{g}\) in \(V \oplus W\), \(V^*\), \(V \otimes W\) and - \(\operatorname{Hom}(V, W)\) are given by - \begin{align*} - X (v + w) & = X v + X w & - X \cdot f & = - f \circ X \\ - X (v \otimes w) & = X v \otimes w + v \otimes X w & - (X \cdot T) v & = X T v - T X v, - \end{align*} - respectively. -\end{example} +\section{Lie Algebras} \begin{definition} Given a Lie algebra \(\mathfrak{g}\), a subspace \(\mathfrak{h} \subset @@ -265,7 +145,7 @@ projection \(\mathfrak{g} \to \mfrac{\mathfrak{g}}{\mathfrak{a}}\). \begin{center} \begin{tikzcd} - \mathfrak{g} \rar{f} \dar & \mathfrak{h} \\ + \mathfrak{g} \rar{f} \dar & \mathfrak{h} \\ \mfrac{\mathfrak{g}}{\mathfrak{a}} \arrow[dotted]{ur} & \end{tikzcd} \end{center} @@ -386,4 +266,83 @@ \mathfrak{sl}_n(K) \oplus K\). \end{example} +\section{Representations} + +\begin{definition} + Given a Lie algebra \(\mathfrak{g}\) over \(K\), \emph{a representation \(V\) + of \(\mathfrak{g}\)}, or \emph{\(\mathfrak{g}\)-module}, is a \(K\)-vector + space endowed with a homomorphism of Lie algebras \(\rho : \mathfrak{g} \to + \mathfrak{gl}(V)\). +\end{definition} + +\begin{example} + Given a Lie algebra \(\mathfrak{g}\) and \(\mathfrak{g}\)-modules \(V\) and + \(W\), the the spaces \(V \oplus W\), \(V^*\), \(V \otimes W\) and + \(\operatorname{Hom}(V, W)\) are all \(\mathfrak{g}\)-modules -- where the + action of \(\mathfrak{g}\) is given by + \begin{align*} + X (v + w) & = X v + X w & + X \cdot f & = - f \circ X \\ + X (v \otimes w) & = X v \otimes w + v \otimes X w & + (X \cdot T) v & = X T v - T X v, + \end{align*} + respectively. +\end{example} + +\begin{definition} + Given a Lie algebra \(\mathfrak{g}\) and two representations \(V\) and \(W\) + of \(\mathfrak{g}\), we call a linear map \(T : V \to W\) \emph{an + intertwiner} or \emph{a homomorphism of representations} if it cummutes with + the action of \(\mathfrak{g}\) in \(V\) and \(W\), in the sence that the + diagram + \begin{center} + \begin{tikzcd} + V \rar{T} \dar[swap]{X} & W \dar{X} \\ + V \rar[swap]{T} & W + \end{tikzcd} + \end{center} + commutes for all \(X \in \mathfrak{g}\). We denote the space of all + intertwiners \(V \to W\) by \(\operatorname{Hom}_{\mathfrak{g}}(V, W)\). +\end{definition} + +\begin{definition} + Given a Lie algebra \(\mathfrak{g}\) and a representation \(V\) of + \(\mathfrak{g}\), a subspace \(W \subset V\) is called \emph{a + subrepresentation} if it is stable under the action of \(\mathfrak{g}\) -- + i.e. \(X w \in W\) for all \(w \in W\) and \(X \in \mathfrak{g}\). +\end{definition} + +\begin{example} + Given a Lie algebra \(\mathfrak{g}\), a representation \(V\) of + \(\mathfrak{g}\) and a subrepresentation \(W \subset V\), the space + \(\mfrac{V}{W}\) has the natural structure of a \(\mathfrak{g}\)-module where + \[ + X (v + W) = X v + W + \] +\end{example} + +\begin{example} + Given a Lie algebra \(\mathfrak{g}\) and representations \(V\) and \(W\) of + \(\mathfrak{g}\), the spaces \(V \wedge W\) and \(V \odot W\) are both + representations of \(G\): they are both quotients of \(V \otimes W\). +\end{example} + +\begin{definition} + A representation of \(\mathfrak{g}\) is called \emph{indecomposable} if it is + not isomorphic to the direct sum of two non-zero representations. +\end{definition} + +\begin{definition} + A representation of \(\mathfrak{g}\) is called \emph{irreducible} if it has + no non-zero subrepresentations. +\end{definition} + +\begin{lemma}[Schur] + Let \(V\) and \(W\) be two irreducible representations of \(\mathfrak{g}\). + and \(T : V \to W\) be an intertwiner. If \(V \not\cong W\) then \(T = 0\) -- + i.e. \(\operatorname{Hom}_{\mathfrak{g}}(V, W) = 0\). If \(V = W\) then \(T\) + is a scalar operator -- i.e. \(\operatorname{End}_{\mathfrak{g}}(V) = K + \operatorname{Id}\). +\end{lemma} + \section{The Universal Enveloping Algebra}