- Commit
- 706c74968ba15e10d2bffc91ddd0aa9d54423453
- Parent
- 37176cc8b4a3eb45be8d4460c27e69d28b180153
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Added the regular module to the list of examples of representations
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Added the regular module to the list of examples of representations
1 file changed, 15 insertions, 0 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/introduction.tex | 15 | 15 | 0 |
diff --git a/sections/introduction.tex b/sections/introduction.tex @@ -738,6 +738,14 @@ concept of a \(\mathcal{U}(\mathfrak{g})\)-module entirely in terms of \end{example} \begin{example} + Given a Lie algebra \(\mathfrak{g}\), the algebra + \(\mathcal{U}(\mathfrak{g})\) is a \(\mathfrak{g}\)-module, where the action + of \(\mathfrak{g}\) in \(\mathcal{U}(\mathfrak{g})\) is given by left + multiplication. This is known as \emph{the regular representation of + \(\mathfrak{g}\)}. +\end{example} + +\begin{example} Given a Lie algebra \(\mathfrak{g}\) and \(\mathfrak{g}\)-modules \(V\) and \(W\), the the spaces \(V \oplus W\), \(V^*\), \(V \otimes W\) and \(\operatorname{Hom}(V, W)\) are all \(\mathfrak{g}\)-modules -- where the @@ -850,6 +858,13 @@ separate algebras. In particular, we may define\dots \] \end{example} +\begin{example} + Given a Lie algebra \(\mathfrak{g}\), the adjoint representation of + \(\mathfrak{g}\) is a subrepresentation of + \(\operatorname{Res}_{\mathfrak{g}}^{\mathcal{U}(\mathfrak{g})} + \mathcal{U}(\mathfrak{g})\). +\end{example} + Surprisingly, this functor has right adjoint. \begin{example}