- Commit
- 7116b6fbd0d4e0dd5585bf4faa0937649a56bc69
- Parent
- a59903ddc00e7c68bc1df7d6405b00114b09104b
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Changed the notation for the graph 𝓟
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Changed the notation for the graph 𝓟
1 file changed, 15 insertions, 15 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/coherent-families.tex | 30 | 15 | 15 |
diff --git a/sections/coherent-families.tex b/sections/coherent-families.tex @@ -239,9 +239,9 @@ Example~\ref{ex:cartan-of-sl} and consider the linear functionals \(\epsilon_i, % implies L(μ) is contained in 𝓔𝔁𝓽(L(λ)) - so that L(μ) is also bounded and % 𝓔𝔁𝓽(L(λ)) ≅ 𝓔𝔁𝓽(L(μ)) \begin{definition} - Denote by \(\mathcal{P}\) the set of \(\mathfrak{sl}_{n + 1}(K)\)-sequences + Denote by \(\mathscr{P}\) the set of \(\mathfrak{sl}_{n + 1}(K)\)-sequences \(m\) such that \(m_i - m_{i + 1}\) is a positive integer for all but a - single \(i \le n\). Given \(m, m' \in \mathcal{P}\), say there is an arrow + single \(i \le n\). Given \(m, m' \in \mathscr{P}\), say there is an arrow \(m \to m'\) if the unique \(i\) such that \(m_i - m_{i + 1}\) is not a positive integer is such that \(m' = \sigma_i \cdot m\). \end{definition} @@ -250,15 +250,15 @@ It should then be obvious that\dots \begin{proposition} Let \(\lambda \notin P^+\) be such that \(L(\lambda)\) is bounded -- so that - \(m(\lambda) \in \mathcal{P}\) -- and suppose that \(\mu \in \mathfrak{h}^*\) - is such that \(m(\mu) \in \mathcal{P}\) and there is an arrow \(m(\lambda) + \(m(\lambda) \in \mathscr{P}\) -- and suppose that \(\mu \in \mathfrak{h}^*\) + is such that \(m(\mu) \in \mathscr{P}\) and there is an arrow \(m(\lambda) \to m(\mu)\). Then \(L(\mu)\) is also bounded and \(\mExt(L(\mu)) \cong \mExt(L(\lambda))\). \end{proposition} \begin{definition} - Let \(\mathcal{P}^+ = \{m \in \mathcal{P} : m_1 - m_2 \ \text{is not a - positive integer}\}\) and \(\mathcal{P}^- = \{m \in \mathcal{P} : m_n - m_{n + Let \(\mathscr{P}^+ = \{m \in \mathscr{P} : m_1 - m_2 \ \text{is not a + positive integer}\}\) and \(\mathscr{P}^- = \{m \in \mathscr{P} : m_n - m_{n + 1} \ \text{is not a positive integer}\}\). \end{definition} @@ -283,7 +283,7 @@ It should then be obvious that\dots % theorem? Perhaps it's best to create another lemma for this % TODOO: Define the notation for σ_i beforehand \begin{proposition} - The connected component of some \(m \in \mathcal{P}\) is given by the + The connected component of some \(m \in \mathscr{P}\) is given by the following. \begin{enumerate} \item If \(m\) is regular and integral then there exists\footnote{Notice @@ -308,8 +308,8 @@ It should then be obvious that\dots \end{tikzcd} \] for some unique \(i\), with \(\sigma_1 \cdots \sigma_i \cdot m' \in - \mathcal{P}^+\) and \(\sigma_n \cdots \sigma_i \cdot m' \in - \mathcal{P}^-\). + \mathscr{P}^+\) and \(\sigma_n \cdots \sigma_i \cdot m' \in + \mathscr{P}^-\). \item If \(m\) is singular then there exists unique \(m' \in W \cdot m\) and \(i\) such that \(m_1' > m_2' > \cdots > m_i' = m_{i + 1}' > \cdots > @@ -331,8 +331,8 @@ It should then be obvious that\dots \sigma_n \cdots \sigma_{i+1} \cdot m' \lar & \end{tikzcd} \] - with \(\sigma_1 \cdots \sigma_{i-1} \cdot m' \in \mathcal{P}^+\) and - \(\sigma_n \cdots \sigma_{i+1} \cdot m' \in \mathcal{P}^-\). + with \(\sigma_1 \cdots \sigma_{i-1} \cdot m' \in \mathscr{P}^+\) and + \(\sigma_n \cdots \sigma_{i+1} \cdot m' \in \mathscr{P}^-\). \item If \(m\) is non-integral then there exists unique \(m' \in W \cdot m\) such that \(m_2' > m_3' > \cdots > m_{n + 1}'\), in which case the @@ -346,8 +346,8 @@ It should then be obvious that\dots \sigma_n \cdots \sigma_1 \cdot m' \lar & \end{tikzcd} \] - with \(m' \in \mathcal{P}^+\) and \(\sigma_n \cdots \sigma_1 \cdot m' \in - \mathcal{P}^-\). + with \(m' \in \mathscr{P}^+\) and \(\sigma_n \cdots \sigma_1 \cdot m' \in + \mathscr{P}^-\). \end{enumerate} \end{proposition} @@ -363,10 +363,10 @@ It should then be obvious that\dots \begin{theorem}[Mathieu] Given \(\lambda, \mu \notin P^+\) with \(L(\lambda)\) and \(L(\mu)\) bounded, \(\mExt(L(\lambda)) \cong \mExt(L(\mu))\) if, and only if \(m(\lambda)\) and - \(m(\mu)\) lie in the same connected component of \(\mathcal{P}\). In + \(m(\mu)\) lie in the same connected component of \(\mathscr{P}\). In particular, the isomorphism classes of semisimple irreducible coherent \(\mathfrak{sl}_{n + 1}(K)\)-families are parameterized by the set - \(\pi_0(\mathcal{P})\) of the connected components of \(\mathcal{P}\). + \(\pi_0(\mathscr{P})\) of the connected components of \(\mathscr{P}\). \end{theorem} % TODO: Change this