- Commit
- 77175706974fd3389be74c7c7fc69f9bc1b36d32
- Parent
- 015def272b6f3c8711a21d6ece349e88a5b976b6
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Removed an unused equivalence from a proposition
Also added notes on common notations for things
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Removed an unused equivalence from a proposition
Also added notes on common notations for things
2 files changed, 905 insertions, 8 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Added | ] | 896 | 896 | 0 |
Modified | sections/mathieu.tex | 17 | 9 | 8 |
diff --git a/] b/] @@ -0,0 +1,896 @@ +\chapter{Irreducible Weight Modules}\label{ch:mathieu} + +\begin{definition} + A representation \(V\) of \(\mathfrak{g}\) is called a \emph{weight + \(\mathfrak{g}\)-module} if \(V = \bigoplus_{\lambda \in \mathfrak{h}^*} + V_\lambda\) and \(\dim V_\lambda < \infty\) for all \(\lambda \in + \mathfrak{h}^*\). The \emph{support of \(V\)} is the set + \(\operatorname{supp} V = \{\lambda \in \mathfrak{h}^* : V_\lambda \ne 0\}\). +\end{definition} + +\begin{example} + Corollary~\ref{thm:finite-dim-is-weight-mod} is equivalent to the fact that + every finite-dimensional representation of a semisimple Lie algebra is a + weight module. More generally, every finite-dimensional irreducible + representation of a reductive Lie algebra is a weight module. +\end{example} + +\begin{example}\label{ex:submod-is-weight-mod} + Proposition~\ref{thm:verma-is-weight-mod} and + proposition~\ref{thm:max-verma-submod-is-weight} imply that the Verma module + \(M(\lambda)\) and its maximal subrepresentation are both weight modules. In + fact, the proof of proposition~\ref{thm:max-verma-submod-is-weight} is + actually a proof of the fact that every subrepresentation \(W \subset V\) of + a weight module \(V\) is a weight module, and \(W_\lambda = V_\lambda \cap + W\) for all \(\lambda \in \mathfrak{h}^*\). +\end{example} + +\begin{example}\label{ex:quotient-is-weight-mod} + Given a weight module \(V\), a submodule \(W \subset V\) and \(\lambda \in + \mathfrak{h}^*\), \(\left(\mfrac{V}{W}\right)_\lambda = \mfrac{V_\lambda}{W} + \cong \mfrac{V_\lambda}{W_\lambda}\). In particular, + \[ + \mfrac{V}{W} + = \bigoplus_{\lambda \in \mathfrak{h}^*} \left(\mfrac{V}{W}\right)_\lambda + \] + is a weight module. It is clear that \(\mfrac{V_\lambda}{W} \subset + \left(\mfrac{V}{W}\right)_\lambda\). To see that \(\mfrac{V_\lambda}{W} = + \left(\mfrac{V}{W}\right)_\lambda\), we remark that \(V_\lambda \cong + \mfrac{\mathcal{U}(\mathfrak{h})}{\mathfrak{m}_\lambda} + \otimes_{\mathcal{U}(\mathfrak{h})} V\) as \(\mathfrak{h}\)-modules, where + \(\mathfrak{m}_\lambda \normal \mathcal{U}(\mathfrak{h})\) is the left ideal + generated by the elements \(H - \lambda(H)\), \(H \in \mathfrak{h}\). + Likewise \(\left(\mfrac{V}{W}\right)_\lambda \cong + \mfrac{\mathcal{U}(\mathfrak{h})}{\mathfrak{m}_\lambda} + \otimes_{\mathcal{U}(\mathfrak{h})} \mfrac{V}{W}\) and the diagram + \begin{center} + \begin{tikzcd} + V_\lambda \arrow{d} \arrow{r}{\pi} & + \left(\mfrac{V}{W}\right)_\lambda \arrow{d} \\ + \mfrac{\mathcal{U}(\mathfrak{h})}{\mathfrak{m}_\lambda} + \otimes_{\mathcal{U}(\mathfrak{h})} V + \arrow[swap]{r}{\pi \otimes \operatorname{id}} & + \mfrac{\mathcal{U}(\mathfrak{h})}{\mathfrak{m}_\lambda} + \otimes_{\mathcal{U}(\mathfrak{h})} \mfrac{V}{W} + \end{tikzcd} + \end{center} + commutes, so that the projection \(V_\lambda \to + \left(\mfrac{V}{W}\right)_\lambda\) is surjective. +\end{example} + +% TODO: Add an example of a module wich is NOT a weight module + +% TODOO: Prove this? Most likely not! +\begin{proposition}\label{thm:centralizer-multiplicity} + Let \(V\) be a completely reducible weight \(\mathfrak{g}\)-module. Then + \(V_\lambda\) is a semisimple + \(\mathcal{U}(\mathfrak{g})_0\)-module for any \(\lambda \in + \mathfrak{h}^*\), where \(\mathcal{U}(\mathfrak{g})_0\) is + the cetralizer of \(\mathfrak{h}\) in \(\mathcal{U}(\mathfrak{g})\). + Moreover, the multiplicity of a given irreducible representation + \(W\) of \(\mathfrak{g}\) coincides with the multiplicity of \(W_\lambda\) in + \(V_\lambda\) as a \(\mathcal{U}(\mathfrak{g})_0\)-module, + for any \(\lambda \in \operatorname{supp} V\). +\end{proposition} + +\begin{definition} + A weight \(\mathfrak{g}\)-module is called \emph{admissible} if \(\dim + V_\lambda\) is bounded. The lowest upper bound for \(\dim V_\lambda\) is + called \emph{the degree of \(V\)}. The \emph{essential support} of \(V\) is + the set \(\operatorname{supp}_{\operatorname{ess}} V = \{ \lambda \in + \mathfrak{h}^* : \dim V_\lambda = d \}\). +\end{definition} + +\begin{example}\label{ex:laurent-polynomial-mod} + There is a natural action of \(\mathfrak{sl}_2(K)\) in the space \(K[x, + x^{-1}]\) of Laurent polynomials given by the formulas in + (\ref{eq:laurent-polynomials-cusp-mod}). One can quickly verify \(K[x, + x^{-1}]_{2 k} = K x^k\) and \(K[x, x^{-1}]_\lambda = 0\) for any \(\lambda + \notin 2 \mathbb{Z}\), so that \(K[x, x^{-1}] = \bigoplus_{k \in \mathbb{Z}} + K x^k\) is a degree \(1\) admissible weight \(\mathfrak{sl}_2(K)\)-module. It + follows from example~\ref{ex:submod-is-weight-mod} that any non-zero + subrepresentation \(W \subset K[x, x^{-1}]\) must contain a monomial \(x^k\). + But since the operators \(-\frac{\mathrm{d}}{\mathrm{d}x} + \frac{x^{-1}}{2}, + x^2 \frac{\mathrm{d}}{\mathrm{d}x} + \frac{x}{2} : K[x, x^{-1}] \to K[x, + x^{-1}]\) are both injective, this implies all other monomials can be found + in \(W\) by successively applaying \(f\) and \(e\). Hence \(W = K[x, + x^{-1}]\) and \(K[x, x^{-1}]\) is an irreducible representation. + \begin{align}\label{eq:laurent-polynomials-cusp-mod} + f \cdot p + & = \left(- \frac{\mathrm{d}}{\mathrm{d}x} + \frac{x^{-1}}{2} \right) p & + h \cdot p + & = 2 x \frac{\mathrm{d}}{\mathrm{d}x} p & + e \cdot p + & = \left( x^2 \frac{\mathrm{d}}{\mathrm{d}x} + \frac{x}{2} \right) p + \end{align} +\end{example} + +% TODO: Point out supp_ess K[x^+-1] is 2Z, which is zariski dense +% This proof is very technical, I don't think its worth including it +\begin{proposition} + Let \(V\) be an infinite-dimensional admissible representation of + \(\mathfrak{g}\). The essential support + \(\operatorname{supp}_{\operatorname{ess}} V\) is Zariski-dense in + \(\mathfrak{h}^*\). +\end{proposition} + +\begin{definition} + A subalgebra \(\mathfrak{p} \subset \mathfrak{g}\) is called \emph{parabolic} + if \(\mathfrak{b} \subset \mathfrak{p}\). +\end{definition} + +% TODO: Comment afterwords that the Verma modules are indeed generalized Verma +% modules +\begin{definition} + Given a parabolic subalgebra \(\mathfrak{p} \subset \mathfrak{g}\) and a + \(\mathfrak{p}\)-module \(V\) the module \(M_{\mathfrak{p}}(V) = + \operatorname{Ind}_{\mathfrak{p}}^{\mathfrak{g}} V\) is called \emph{a + generalized Verma module}. +\end{definition} + +\begin{proposition} + Given an irreducible \(\mathfrak{p}\)-module \(V\), the generalized Verma + module \(M_{\mathfrak{p}}(V)\) has a unique maximal subrepresentation + \(N_{\mathfrak{p}}(V)\) and a unique irreducible quotient + \(L_{\mathfrak{p}}(V) = \mfrac{M_{\mathfrak{p}}(V)}{N_{\mathfrak{p}}(V)}\). + The irreducible quotient \(L_{\mathfrak{p}}(V)\) is a weight module. +\end{proposition} + +\begin{definition} + An irreducible \(\mathfrak{g}\)-module is called \emph{parabolic induced} if + it is isomorphic to \(L_{\mathfrak{p}}(V)\) for some proper parabolic + subalgebra \(\mathfrak{p} \subsetneq \mathfrak{g}\) and some + \(\mathfrak{p}\)-module \(V\). An \emph{irreducible cuspidal + \(\mathfrak{g}\)-module} is an irreducible representation of \(\mathfrak{g}\) + which is \emph{not} parabolic induced. +\end{definition} + +% TODO: Remark on the fact that any simple weight p-mod is a (p/u)-mod, so that +% the notation of a cuspidal p-mod is well definited +% TODO: Define the conjugation of a p-mod by an element of the Weil group? +\begin{theorem}[Fernando] + Any irreducible weight \(\mathfrak{g}\)-module is isomorphic to + \(L_{\mathfrak{p}}(V)\) for some parabolic subalgebra \(\mathfrak{p} \subset + \mathfrak{g}\) and some irreducible cuspidal \(\mathfrak{p}\)-module \(V\). +\end{theorem} + +% TODO: Point out that the relationship between p-modules and cuspidal +% g-modules is not 1-to-1 + +\begin{proposition}[Fernando] + Given a parabolic subalgebra \(\mathfrak{p} \subset \mathfrak{g}\), there + exists a basis\footnote{This is usually called \emph{a $\mathfrak{p}$-adapted + basis}} \(\Sigma\) for \(\Delta\) such that \(\Sigma \subset + \Delta_{\mathfrak{p}_1}\). Furthermore, if \(\mathfrak{p}' \subset + \mathfrak{g}\) is another parabolic subalgebra, \(V\) is an irreducible + cuspidal \(\mathfrak{p}\)-module and \(W\) is an irreducible cuspidal + \(\mathfrak{p}'\)-module then \(L_{\mathfrak{p}}(V) \cong + L_{\mathfrak{p}'}(W)\) if, and only if \(\mathfrak{p}' = \mathfrak{p}^w\) and + \(W \cong V^w\) for some \(w \in \mathcal{W}_V\), where + \[ + \mathcal{W}_V + = \langle + T_\beta : \beta \in \Sigma, H_\beta + \mathfrak{u} + \ \text{is central in}\ \mfrac{\mathfrak{p}}{\mathfrak{u}} + \ \text{and}\ H_\beta\ \text{acts as a positive integer in}\ V + \rangle + \subset \mathcal{W} + \] +\end{proposition} + +% TODO: Point out that the definition of W_V is independant of the choice of +% Sigma + +% TODO: Remark that the support of a simple weight module is always contained +% in a coset +\begin{corollary}[Fernando]\label{thm:cuspidal-mod-equivs} + Let \(V\) be an irreducible weight \(\mathfrak{g}\)-module. The following + conditions are equivalent. + \begin{enumerate} + \item \(V\) is cuspidal. + \item \(F_\alpha\) acts injectively\footnote{This is what's usually refered + to as a \emph{dense} representation in the literature.} in \(V\) for all + \(\alpha \in \Delta\). + \item The support of \(V\) is precisely one \(Q\)-coset\footnote{This is + what's usually referred to as a \emph{torsion-free} representation in the + literature.}. + \end{enumerate} +\end{corollary} + +\begin{example} + As noted in example~\ref{ex:laurent-polynomial-mod}, the element \(f \in + \mathfrak{sl}_2(K)\) acts injectively in the space of Laurent polynomials. + Hence \(K[x, x^{-1}]\) is a cuspidal representation of + \(\mathfrak{sl}_2(K)\). +\end{example} + +% TODOO: Do we need this proposition? I think this only comes up in the +% classification of simple completely reducible coherent families +\begin{proposition} + If \(\mathfrak{g} = \mathfrak{z} \oplus \mathfrak{s}_1 \oplus \cdots \oplus + \mathfrak{s}_n\), where \(\mathfrak{z}\) is the center of \(\mathfrak{g}\) + and \(\mathfrak{s}_i\) is a simple component of \(\mathfrak{g}\), then any + irreducible weight \(\mathfrak{g}\)-module \(V\) decomposes as + \[ + V = Z \otimes V_1 \otimes \cdots \otimes V_n + \] + where \(Z\) is a 1-dimensional representation of \(\mathfrak{z}\) and \(V_i\) + is an irreducible weight \(\mathfrak{s}_i\)-module. +\end{proposition} + +\begin{definition} + A \emph{coherent family \(\mathcal{M}\) of degree \(d\)} is a weight + \(\mathfrak{g}\)-module \(\mathcal{M}\) such that + \begin{enumerate} + \item \(\dim \mathcal{M}_\lambda = d\) for \emph{all} \(\lambda \in + \mathfrak{h}^*\) + \item For any \(u \in \mathcal{U}(\mathfrak{g})\) in the centralizer + \(\mathcal{U}(\mathfrak{g})_0\) of \(\mathfrak{h}\) in + \(\mathcal{U}(\mathfrak{g})\), the map + \begin{align*} + \mathfrak{h}^* & \to K \\ + \lambda & \mapsto + \operatorname{Tr}(u\!\restriction_{\mathcal{M}_\lambda}) + \end{align*} + is polynomial in \(\lambda\). + \end{enumerate} +\end{definition} + +% TODO: Add an example: there's an example of a coherent sl2-family in +% Mathieu's paper +% TODO: Add a discussion on how this may sound unintuitive, but the motivation +% comes from the relationship between highest weight modules and coherent +% families + +% TODO: Point out this is equivalent to M being a simple object in the +% category of coherent families +\begin{definition} + A coherent family \(\mathcal{M}\) is called \emph{irreducible} if + \(\mathcal{M}_\lambda\) is a simple + \(\mathcal{U}(\mathfrak{g})_0\)-module for some \(\lambda \in + \mathfrak{h}^*\). +\end{definition} + +\begin{definition} + Given an admissible representation \(V\) of \(\mathfrak{g}\) of degree \(d\), + a coherent extension \(\mathcal{M}\) of \(V\) is a coherent family + \(\mathcal{M}\) of degree \(d\) that contains \(V\) as a subquotient. +\end{definition} + +% Mathieu's proof of this is somewhat profane, I don't think it's worth +% including it in here +% TODO: Define the notation for M[mu] somewhere else +% TODO: Note somewhere that M[mu] is a submodule +\begin{lemma} + Given a coherent family \(\mathcal{M}\) and \(\lambda \in \mathfrak{h}^*\), + \(\mathcal{M}[\lambda]\) has finite length as a \(\mathfrak{g}\)-module. +\end{lemma} + +% TODO: From this we may conclude that any admissible submodule is a submodule +% of the semisimplification of any of its coherent extensions +\begin{corollary} + Let \(\mathcal{M}\) be a coherent family of degree \(d\). There exists a + unique completely reducible coherent family + \(\mathcal{M}^{\operatorname{ss}}\) of degree \(d\) such that the composition + series of \(\mathcal{M}^{\operatorname{ss}}[\lambda]\) is the same as that of + \(\mathcal{M}[\lambda]\) for all \(\lambda \in \mathfrak{h}^*\), called + \emph{the semisimplification\footnote{Recall that a ``semisimple'' is a + synonim for ``completely reducible'' in the context of modules.} of + \(\mathcal{M}\)}. + + Namely, if \(\{\lambda_i\}_i\) is a set of representatives of the + \(Q\)-cosets of \(\mathfrak{h}^*\) and \(0 = \mathcal{M}_{i 0} \subset + \mathcal{M}_{i 1} \subset \cdots \subset \mathcal{M}_{i n_i} = + \mathcal{M}[\lambda_i]\) is a composition series, + \[ + \mathcal{M}^{\operatorname{ss}} + \cong \bigoplus_{i j} \mfrac{\mathcal{M}_{i j + 1}}{\mathcal{M}_{i j}} + \] +\end{corollary} + +\begin{proof} + The uniqueness of \(\mathcal{M}^{\operatorname{ss}}\) should be clear: + since \(\mathcal{M}^{\operatorname{ss}}\) is completely reducible, so is + \(\mathcal{M}^{\operatorname{ss}}[\lambda_i]\). Hence + \[ + \mathcal{M}^{\operatorname{ss}}[\lambda_i] + \cong \bigoplus_j \mfrac{\mathcal{M}_{i j + 1}}{\mathcal{M}_{i j}} + \] + + As for the existence of the semisimplification, it suffices to show + \[ + \mathcal{M}^{\operatorname{ss}} + = \bigoplus_{i j} \mfrac{\mathcal{M}_{i j + 1}}{\mathcal{M}_{i j}} + \] + is indeed a completely reducible coherent family of degree \(d\). + + We know from examples~\ref{ex:submod-is-weight-mod} and + \ref{ex:quotient-is-weight-mod} that each quotient \(\mfrac{\mathcal{M}_{i j + + 1}}{\mathcal{M}_{i j}}\) is a weight module. Hence + \(\mathcal{M}^{\operatorname{ss}}\) is a weight module. Furthermore, given + \(\mu \in \lambda_k + Q\) + \[ + \mathcal{M}_\mu^{\operatorname{ss}} + = \bigoplus_{i j} + \left( + \mfrac{\mathcal{M}_{i j + 1}}{\mathcal{M}_{i j}} + \right)_\mu + = \bigoplus_j + \left( + \mfrac{\mathcal{M}_{k j + 1}}{\mathcal{M}_{k j}} + \right)_\mu + \cong \bigoplus_j + \mfrac{(\mathcal{M}_{k j + 1})_\mu} + {(\mathcal{M}_{k j})_\mu} + \] + + In particular, + \[ + \dim \mathcal{M}_\mu^{\operatorname{ss}} + = \sum_j + \dim (\mathcal{M}_{k j + 1})_\mu + - \dim (\mathcal{M}_{k j})_\mu + = \dim \mathcal{M}[\lambda_k]_\mu + = \dim \mathcal{M}_\mu + = d + \] + + Likewise, given \(u \in \mathcal{U}(\mathfrak{g})_0\) the value + \[ + \operatorname{Tr}(u\!\restriction_{\mathcal{M}_\mu^{\operatorname{ss}}}) + = \sum_j + \operatorname{Tr}(u\!\restriction_{(\mathcal{M}_{k j + 1})_\mu}) + - \operatorname{Tr}(u\!\restriction_{(\mathcal{M}_{k j})_\mu}) + = \operatorname{Tr}(u\!\restriction_{\mathcal{M}[\lambda_k]_\mu}) + = \operatorname{Tr}(u\!\restriction_{\mathcal{M}_\mu}) + \] + is polynomial in \(\mu \in \mathfrak{h}^*\). +\end{proof} + +\begin{corollary}\label{thm:admissible-is-submod-of-extension} + Let \(V\) be an irreducible admissible \(\mathfrak{g}\)-module and + \(\mathcal{M}\) be a completely reducible coherent extension of \(V\). Then + \(V\) is contained in \(\mathcal{M}\). +\end{corollary} + +\begin{proof} + Since \(V\) is irreducible, its support is contained in a single \(Q\)-coset. + This implies that \(V\) is a subquotient of \(\mathcal{M}[\lambda]\) for any + \(\lambda \in \operatorname{supp} V\). If we fix some composition series \(0 + = \mathcal{M}_0 \subset \mathcal{M}_1 \subset \cdots \subset \mathcal{M}_n = + \mathcal{M}[\lambda]\) of \(\mathcal{M}[\lambda]\) with \(V \cong + \mfrac{\mathcal{M}_{i + 1}}{\mathcal{M}_i}\), there is a natural inclusion + \[ + V + \isoto \mfrac{\mathcal{M}_{i + 1}}{\mathcal{M}_i} + \to \bigoplus_j \mfrac{\mathcal{M}_{j + 1}}{\mathcal{M}_j} + \cong \mathcal{M}^{\operatorname{ss}}[\lambda] + \] + + It then follows from the uniqueness of the semisimplification of + \(\mathcal{M}\) that \(\mathcal{M} \cong \mathcal{M}^{\operatorname{ss}}\), + so we have an inclusion \(V \to \mathcal{M}\). +\end{proof} + +\begin{lemma} + Let \(\mathcal{M}\) be a coherent family. The set \(U = \{\lambda \in + \mathfrak{h}^* : \mathcal{M}_\lambda \ \text{is a simple + $\mathcal{U}(\mathfrak{g})_0$-module}\}\) is Zariski-open. +\end{lemma} + +\begin{proof} + For each \(\lambda \in \mathfrak{h}^*\) we introduce the bilinear form + \begin{align*} + B_\lambda : \mathcal{U}(\mathfrak{g})_0 \times \mathcal{U}(\mathfrak{g})_0 + & \to K \\ + (u, v) + & \mapsto \operatorname{Tr}(u v \!\restriction_{\mathcal{M}_\lambda}) + \end{align*} + and consider its rank -- i.e. the dimension of the image of the induced + operator + \begin{align*} + \mathcal{U}(\mathfrak{g})_0 & \to \mathcal{U}(\mathfrak{g})_0^* \\ + u & \mapsto B_\lambda(u, \cdot) + \end{align*} + + Our first observation is that \(\operatorname{rank} B_\lambda \le d^2\). This + follows from the commutativity of + \begin{center} + \begin{tikzcd} + \mathcal{U}(\mathfrak{g})_0 \arrow{r} \arrow{d} & + \mathcal{U}(\mathfrak{g})_0^* \\ + \operatorname{End}(\mathcal{M}_\lambda) \arrow{r}{\sim} & + \operatorname{End}(\mathcal{M}_\lambda)^* \arrow{u} + \end{tikzcd}, + \end{center} + where the map \(\mathcal{U}(\mathfrak{g})_0 \to + \operatorname{End}(\mathcal{M}_\lambda)\) is given by the action of + \(\mathcal{U}(\mathfrak{g})_0\), the map + \(\operatorname{End}(\mathcal{M}_\lambda)^* \to + \mathcal{U}(\mathfrak{g})_0^*\) is its dual, and the isomorphism + \(\operatorname{End}(\mathcal{M}_\lambda) \isoto + \operatorname{End}(\mathcal{M}_\lambda)^*\) is induced by the trace form + \begin{align*} + \operatorname{End}(\mathcal{M}_\lambda) \times + \operatorname{End}(\mathcal{M}_\lambda) & \to K \\ + (T, S) & \mapsto \operatorname{Tr}(T S) + \end{align*} + + Indeed, \(\operatorname{rank} B_\lambda \le + \operatorname{rank}(\mathcal{U}(\mathfrak{g})_0 \to + \operatorname{End}(\mathcal{M}_\lambda)) \le \dim + \operatorname{End}(\mathcal{M}_\lambda) = d^2\). Furthermore, if + \(\operatorname{rank} B_\lambda = d^2\) then we must have + \(\operatorname{rank}(\mathcal{U}(\mathfrak{g})_0 \to + \operatorname{End}(\mathcal{M}_\lambda)) = d^2\) -- i.e. the map + \(\mathcal{U}(\mathfrak{g})_0 \to \operatorname{End}(\mathcal{M}_\lambda)\) + is surjective. In particular, if \(\operatorname{rank} B_\lambda = d^2\) then + \(\mathcal{M}_\lambda\) is a simple \(\mathcal{U}(\mathfrak{g})_0\)-module, + for if \(V \subset \mathcal{M}_\lambda\) is invariant under the action of + \(\mathcal{U}(\mathfrak{g})_0\) then \(V\) is invariant under any + \(K\)-linear operator \(\mathcal{M}_\lambda \to \mathcal{M}_\lambda\), so + that \(W = 0\) or \(W = \mathcal{M}_\lambda\). + + On the other hand, if \(\mathcal{M}_\lambda\) is simple then by Burnside's + theorem on matrix algebras the map \(\mathcal{U}(\mathfrak{g})_0 \to + \operatorname{End}(\mathcal{M}_\lambda)\) is surjective. Hence the + commutativity of the previously drawn diagram, as well as the fact that + \(\operatorname{rank}(\mathcal{U}(\mathfrak{g})_0 \to + \operatorname{End}(\mathcal{M}_\lambda)) = + \operatorname{rank}(\operatorname{End}(\mathcal{M}_\lambda)^* \to + \mathcal{U}(\mathfrak{g})_0^*)\), imply that \(\operatorname{rank} B_\lambda + = d^2\). This goes to show that \(U\) is precisely the set of \(\lambda\) + such that \(B_\lambda\) has maximal rank \(d^2\). We now show that \(U\) is + Zariski-open. First, notice that + \[ + U = + \bigcup_{\substack{W \subset \mathcal{U}(\mathfrak{g})_0 \\ \dim W = d^2}} + U_W, + \] + where \(U_W = \{\lambda \in \mathcal{U}(\mathfrak{g})_0 : \operatorname{rank} + B_\lambda\!\restriction_W = d^2 \}\). + + Indeed, if \(\operatorname{rank} B_\lambda = d^2\) it follows from the + surjectivity of the map \(\mathcal{U}(\mathfrak{g})_0 \to + \operatorname{End}(\mathcal{M}_\lambda)\) that there is some \(W \subset + \mathcal{U}(\mathfrak{g})_0\) with \(\dim W = d^2\) such that the restriction + \(W \to \operatorname{End}(\mathcal{M}_\lambda)\) is surjective. The + comutativity of + \begin{center} + \begin{tikzcd} + W \arrow{r} \arrow{d} & W^* \\ + \operatorname{End}(\mathcal{M}_\lambda) \arrow{r}{\sim} & + \operatorname{End}(\mathcal{M}_\lambda)^* \arrow{u} + \end{tikzcd} + \end{center} + then implies \(\operatorname{rank} B_\lambda\!\restriction_W = d^2\). In + other words, \(U \subset \bigcup_W U_W\). + + Likewise, if \(\operatorname{rank} B_\lambda\!\restriction_W = d^2\) for some + \(W\), then the commutativity of + \begin{center} + \begin{tikzcd} + W \arrow{r} \arrow{d} & W^* \\ + \mathcal{U}(\mathfrak{g})_0 \arrow{r} & + \mathcal{U}(\mathfrak{g})_0^* \arrow{u} + \end{tikzcd} + \end{center} + implies \(\operatorname{rank} B_\lambda \ge d^2\), which goes to show + \(\bigcup_W U_W \subset U\). + + Given \(\lambda \in U_W\), the surjectivity of \(W \to + \operatorname{End}(\mathcal{M}_\lambda)\) and the fact that \(\dim W < + \infty\) imply \(W \to W^*\) is invertible. Since \(\mathcal{M}\) is a + coherent family, \(B_\lambda\) depends polynomialy in \(\lambda\). Hence so + does the induced maps \(W \to W^*\). In particular, there is some Zariski + neighborhood \(V\) of \(\lambda\) such that the map \(W \to W^*\) induced by + \(B_\mu\!\restriction_W\) is invertible for all \(\mu \in V\). + + But the surjectivity of the map induced by \(B_\mu\!\restriction_W\) implies + \(\operatorname{rank} B_\mu = d^2\), so \(\mu \in U_W\) and therefore \(V + \subset U_W\). This implies \(U_W\) is open for all \(W\). Finally, \(U\) is + the union of Zariski-open subsets and is therefore open. We are done. +\end{proof} + +\begin{theorem}[Mathieu] + Let \(\mathcal{M}\) be an irreducible coherent family of degree \(d\) and + \(\lambda \in \mathfrak{h}^*\). The following conditions are equivalent. + \begin{enumerate} + \item \(\mathcal{M}[\lambda]\) is irreducible. + \item \(F_\alpha\!\restriction_{\mathcal{M}[\lambda]}\) is injective for + all \(\alpha \in \Delta\). + \item \(\mathcal{M}[\lambda]\) is cuspidal. + \end{enumerate} +\end{theorem} + +\begin{proof} + The fact that \strong{(i)} and \strong{(iii)} are equivalent follows directly + from corollary~\ref{thm:cuspidal-mod-equivs}. Likewise, it is clear from the + corollary that \strong{(iii)} implies \strong{(ii)}. All it's left is to show + \strong{(ii)} implies \strong{(iii)}. + + Suppose \(F_\alpha\) acts injectively in the subrepresentation + \(\mathcal{M}[\lambda]\), for all \(\alpha \in \Delta\). Since + \(\mathcal{M}[\lambda]\) has finite length, \(\mathcal{M}[\lambda]\) contains + an infinite-dimensiona irreducible \(\mathfrak{g}\)-submodule \(V\). + Moreover, again by corollary~\ref{thm:cuspidal-mod-equivs} we conclude \(V\) + is a cuspidal representation, and its degree is bounded by \(d\). We claim + \(\mathcal{M}[\lambda] = V\). + + Since \(\mathcal{M}\) is irreducible and + \(\operatorname{supp}_{\operatorname{ess}} V\) is Zariski-dense, \(U = \{\mu + \in \mathfrak{h}^* : \mathcal{M}_\mu \ \text{is a simple + $\mathcal{U}(\mathfrak{g})_0$-module}\}\) is a non-empty open set, and \(U + \cap \operatorname{supp}_{\operatorname{ess}} V\) is non-empty. In other + words, there is some \(\mu \in \mathfrak{h}^*\) such that \(\mathcal{M}_\mu\) + is a simple \(\mathcal{U}(\mathfrak{g})_0\)-module and \(\dim V_\mu = \deg + V\). + + In particular, \(V_\mu \ne 0\), so \(V_\mu = \mathcal{M}_\mu\). Now given any + irreducible \(\mathfrak{g}\)-module \(W\), the multiplicity of \(W\) in + \(\mathcal{M}[\lambda]\) is the same as the multiplicity \(W_\mu\) in + \(\mathcal{M}_\mu\) as a \(\mathcal{U}(\mathfrak{g})_0\)-module, which is, of + course, \(1\) if \(W \cong V\) and \(0\) otherwise. Hence + \(\mathcal{M}[\lambda] = V\) and \(\mathcal{M}[\lambda]\) is cuspidal. +\end{proof} + +\section{Localizations \& the Existance of Coherent Extensions} + +% TODO: Comment on the intuition behind the proof: we can get vectors in a +% given eigenspace by translating by the F's and E's, but neither of those are +% injective in general, so the translation could take nonzero vectors to zero. +% If the F's were invertible this problem wouldn't exist, so we might as well +% invert them by force! + +\begin{definition} + Let \(R\) be a ring. A subset \(S \subset R\) is called \emph{multiplicative} + if \(s \cdot t \in S\) for all \(s, t \in S\) and \(0 \notin S\). A + multiplicative subset \(S\) is said to satisfy \emph{Ore's localization + condition} if for each \(r \in R\), \(s \in S\) there exists \(u_1, u_2 \in + R\) and \(t_1, t_2 \in S\) such that \(s r = u_1 t_1\) and \(r s = t_2 u_2\). +\end{definition} + +\begin{theorem}[Ore-Asano] + Let \(S \subset R\) be a multiplicative subset satisfying Ore's localization + condition. Then there exists a (unique) ring \(S^{-1} R\), with a canonical + ring homomorphism \(R \to S^{-1} R\), and enjoying the universal property + that each ring homomorphism \(f : R \to T\) such that \(f(s)\) is invertible + for all \(s \in S\) can be uniquely extended to a ring homomorphism \(S^{-1} + R \to T\). \(S^{-1} R\) is called \emph{the localization of \(R\) by \(S\)}, + and the map \(R \to S^{-1} R\) is called \emph{the localization map}. + \begin{center} + \begin{tikzcd} + S^{-1} R \arrow[dotted]{rd} & \\ + R \arrow{u} \arrow[swap]{r}{f} & T + \end{tikzcd} + \end{center} +\end{theorem} + +% TODO: Cite the discussion of goodearl-warfield, chap 6, on how to derive the +% localization condition +% TODO: In general checking that a set satisfies Ore's condition can be tricky, +% but there is an easyer condition given by the lemma + +\begin{lemma} + Let \(S \subset R\) be a multiplicative subset generated by locally + \(\operatorname{ad}\)-nilpotent elements -- i.e. elements \(s \in S\) such + that for each \(r \in R\) there exists \(n > 0\) such that \(\operatorname{ad}(s)^n r = [s, [s, \cdots + [s, r]]\cdots] = 0\). Then \(S\) satisfies Ore's + localization condition. +\end{lemma} + +\begin{definition} + Let \(S \subset R\) be a multiplicative subset satisfying Ore's localization + condition and \(M\) be a \(R\)-module. The \(S^{-1} R\)-module \(S^{-1} M = + S^{-1} R \otimes_R M\) is called \emph{the localization of \(M\) by \(S\)}, + and the homomorphism of \(R\)-modules + \begin{align*} + M & \to S^{-1} M \\ + m & \mapsto 1 \otimes m + \end{align*} + is called \emph{the localization map of \(M\)}. +\end{definition} + +% TODO: Point out that the localization of modules is functorial + +% TODO: Point out the the localization map is in not injective in general +\begin{lemma} + Let \(S \subset R\) be a multiplicative subset satisfying Ore's localization + condition and \(M\) be a \(R\)-module. If \(S\) acts injectively in \(M\) + then the localization map \(M \to S^{-1} M\) is injective. In particular, if + \(S\) has no zero divisors then \(R\) is a subring of \(S^{-1} R\). +\end{lemma} + +% TODO: Point out that S^-1 M can be seen as a R-module, where R acts via the +% localization map +% TODO: Point out that each element of the localization has the form s^-1 r + +% TODO: Point out that Sigma depends on V! +\begin{lemma}\label{thm:nice-basis-for-inversion} + Let \(V\) be an irreducible infinite-dimensional admissible + \(\mathfrak{g}\)-module. There is a basis \(\Sigma = \{\beta_1, \ldots, + \beta_n\}\) of \(\Delta\) such that the elements \(F_{\beta_i}\) all act + injectively on \(V\) and satisfy \([F_{\beta_i}, F_{\beta_j}] = 0\). +\end{lemma} + +\begin{corollary} + Let \(\Sigma\) be as in lemma~\ref{thm:nice-basis-for-inversion} and + \((F_\beta)_{\beta \in \Sigma} \subset \mathcal{U}(\mathfrak{g})\) be the + multiplicative subset generated by the \(F_\beta\)'s. The \(K\)-algebra + \(\Sigma^{-1} \mathcal{U}(\mathfrak{g}) = (F_\beta)_{\beta \in \Sigma}^{-1} + \mathcal{U}(\mathfrak{g})\) is well defined. Moreover, if we denote by + \(\Sigma^{-1} V\) the localization of \(V\) by \((F_\beta)_{\beta \in + \Sigma}\), the localization map \(V \to \Sigma^{-1} V\) is injective. +\end{corollary} + +% TODO: Fix V and Sigma beforehand +\begin{proposition}\label{thm:irr-admissible-is-contained-in-nice-mod} + The the restriction of the localization \(\Sigma^{-1} V\) is an admissible + \(\mathfrak{g}\)-module of degree \(d\) with \(\operatorname{supp} + \Sigma^{-1} V = Q + \operatorname{supp} V\) and \(\dim \Sigma^{-1} V_\lambda + = d\) for all \(\lambda \in \operatorname{supp} \Sigma^{-1} V\). +\end{proposition} + +\begin{proof} + Fix some \(\beta \in \Sigma\). We begin by showing that \(F_\beta\) and + \(F_\beta^{-1}\) map the weight space \(\Sigma^{-1} V_\lambda\) to the weight + spaces \(\Sigma^{-1} V_{\lambda - \beta}\) and \(\Sigma^{-1} V_{\lambda + + \beta}\) respectively. Indeed, given \(v \in V_\lambda\) and \(H \in + \mathfrak{h}\) we have + \[ + H F_\beta v + = ([H, F_\beta] + F_\beta H)v + = F_\beta (-\beta(H) + H) v + = F_\beta (\lambda - \beta)(H) \cdot v + = (\lambda - \beta)(H) \cdot F_\beta v + \] + + On the other hand, + \[ + 0 + = [H, 1] + = [H, F_\beta F_\beta^{-1}] + = F_\beta [H, F_\beta^{-1}] + [H, F_\beta] F_\beta^{-1} + = F_\beta [H, F_\beta^{-1}] - \beta(H) F_\beta F_\beta^{-1}, + \] + so that \([H, F_\beta^{-1}] = \beta(H) \cdot F_\beta^{-1}\) and therefore + \[ + H F_\beta^{-1} v + = ([H, F_\beta^{-1}] + F_\beta^{-1} H) v + = F_\beta^{-1} (\beta(H) + H) v + = (\lambda + \beta)(H) \cdot F_\beta^{-1} v + \] + + From the fact that \(F_\beta^{\pm 1}\) maps \(V_\lambda\) to \(\Sigma^{-1} + V_{\lambda \pm \beta}\) follows our first conclusion: since \(V\) is a weight + module and every element of \(\Sigma^{-1} V\) has the form \(s^{-1} v = + s^{-1} \otimes v\) for \(s \in (F_\beta)_{\beta \in \Sigma}\) and \(v \in + V\), we can see that \(\Sigma^{-1} V = \bigoplus_\lambda \Sigma^{-1} + V_\lambda\). Furtheremore, since the action of each \(F_\beta\) in + \(\Sigma^{-1} V\) is bijective and \(\Sigma\) is a basis of \(Q\) we obtain + \(\operatorname{supp} \Sigma^{-1} V = Q + \operatorname{supp} V\). + + Again, because of the bijectivity of the \(F_\beta\)'s, to see that \(\dim + \Sigma^{-1} V_\lambda = d\) for all \(\lambda \in \operatorname{supp} + \Sigma^{-1} V\) it suffices to show that \(\dim \Sigma^{-1} V_\lambda = d\) + for some \(\lambda \in \operatorname{supp} \Sigma^{-1} V\). We may take + \(\lambda \in \operatorname{supp} V\) with \(\dim V_\lambda = d\). For any + finite-dimensional subspace \(W \subset \Sigma^{-1} V_\lambda\) we can find + \(s \in (F_\beta)_{\beta \in \Sigma}\) such that \(s W \subset V\). If \(s = + F_{\beta_{i_1}} \cdots F_{\beta_{i_n}}\), it is clear \(s W \subset + V_{\lambda - \beta_{i_1} - \cdots - \beta_{i_n}}\), so \(\dim W = \dim sW \le + d\). This holds for all finite-dimensional \(W \subset \Sigma^{-1} + V_\lambda\), so \(\dim \Sigma^{-1} V_\lambda \le d\). It then follows from + the fact that \(V_\lambda \subset \Sigma^{-1} V_\lambda\) that \(V_\lambda = + \Sigma^{-1} V_\lambda\) and therefore \(\dim \Sigma^{-1} V_\lambda = d\). +\end{proof} + +\begin{proposition}\label{thm:nice-automorphisms-exist} + There is a family of automorphisms \(\{\theta_\lambda : \Sigma^{-1} + \mathcal{U}(\mathfrak{g}) \to \Sigma^{-1} + \mathcal{U}(\mathfrak{g})\}_{\lambda \in \mathfrak{h}^*}\) such that + \begin{enumerate} + \item \(\theta_{k_1 \beta_1 + \cdots + k_n \beta_n}(r) = F_{\beta_1}^{k_1} + \cdots F_{\beta_n}^{k_n} r F_{\beta_1}^{- k_n} \cdots F_{\beta_n}^{- + k_1}\) for all \(r \in \Sigma^{-1} \mathcal{U}(\mathfrak{g})\) and \(k_1, + \ldots, k_n \in \mathbb{Z}\). + + \item For each \(r \in \Sigma^{-1} \mathcal{U}(\mathfrak{g})\) the map + \begin{align*} + \mathfrak{h}^* & \to \Sigma^{-1} \mathcal{U}(\mathfrak{g}) \\ + \lambda & \mapsto \theta_\lambda(r) + \end{align*} + is polynomial. + + \item If \(\lambda, \mu \in \mathfrak{h}^*\), \(M\) is a \(\Sigma^{-1} + \mathcal{U}(\mathfrak{g})\)-module whose restriction to + \(\mathcal{U}(\mathfrak{g})\) is a weight \(\mathfrak{g}\)-module and + \(\theta_\lambda M\) is the \(\Sigma^{-1} + \mathcal{U}(\mathfrak{g})\)-module \(M\) twisted by the automorphism + \(\theta_\lambda\) then \(M_\mu = (\theta_\lambda M)_{\mu + \lambda}\). + In particular, \(\operatorname{supp} \theta_\lambda M = \lambda + + \operatorname{supp} M\). + \end{enumerate} +\end{proposition} + +\begin{proof} + Since the elements \(F_\beta\), \(\beta \in \Sigma\) commute with one + another, the endomorphisms + \begin{align*} + \theta_{k_1 \beta_1 + \cdots + k_n \beta_n} + : \Sigma^{-1} \mathcal{U}(\mathfrak{g}) & + \to \Sigma^{-1} \mathcal{U}(\mathfrak{g}) \\ + r & \mapsto + F_{\beta_1}^{k_1} \cdots F_{\beta_n}^{k_n} + r + F_{\beta_1}^{- k_n} \cdots F_{\beta_n}^{- k_1} + \end{align*} + are well defined for all \(k_1, \ldots, k_n \in \mathbb{Z}\). + + Fix some \(r \in \Sigma^{-1} \mathcal{U}(\mathfrak{g})\). For any \(s \in + (F_\beta)_{\beta \in \Sigma}\) and \(k > 0\) we have \(s^k r = \binom{k}{0} + \operatorname{ad}(s)^0 r s^{k - 0} + \cdots + \binom{k}{k} + \operatorname{ad}(s)^k r s^{k - k}\). Now if we take \(m\) such + \(\operatorname{ad}(F_\beta)^{m + 1} r = 0\) for all \(\beta \in \Sigma\) we + find + \[ + \theta_{k_1 \beta_1 + \cdots + k_n \beta_n}(r) + = \sum_{i_1, \ldots, i_n = 1, \ldots, m} + \binom{k_1}{i_1} \cdots \binom{k_n}{i_n} + \operatorname{ad}(F_{\beta_1})^{i_1} \cdots + \operatorname{ad}(F_{\beta_n})^{i_n} + r + F_{\beta_1}^{- i_1} \cdots F_{\beta_n}^{- i_n} + \] + for all \(k_1, \ldots, k_n \in \NN\). + + Since the binomial coeffients \(\binom{x}{k} = \frac{x (x -1) \cdots (x - k + + 1)}{k!}\) can be uniquely extended to polynomial functions in \(x \in K\), we + may in general define + \[ + \theta_\lambda(r) + = \sum_{i_1, \ldots, i_n \ge 0} + \binom{\lambda_1}{i_1} \cdots \binom{\lambda_n}{i_n} + \operatorname{ad}(F_{\beta_1})^{i_1} \cdots + \operatorname{ad}(F_{\beta_n})^{i_n} + r + F_{\beta_1}^{- i_1} \cdots F_{\beta_n}^{- i_n} + \] + for \(\lambda_1, \ldots, \lambda_n \in K\), \(\lambda = \lambda_1 \beta_1 + + \cdots + \lambda_n \beta_n \in \mathfrak{h}^*\) + + It is clear that the \(\theta_\lambda\) are endmorphisms. To see that the + \(\theta_\lambda\) are indeed automorphisms, notice \(\theta_{- k_1 \beta_1 - + \cdots - k_n \beta_n} = \theta_{k_1 \beta_1 + \cdots + k_n \beta_n}^{-1}\). + The uniqueness of the polynomial extensions then implies \(\theta_{- \lambda} + = \theta_\lambda^{-1}\) in general: given \(r \in \Sigma^{-1} + \mathcal{U}(\mathfrak{g})\), the map + \begin{align*} + \mathfrak{h}^* & \to \Sigma^{-1} \mathcal{U}(\mathfrak{g}) \\ + \lambda & \mapsto \theta_\lambda(\theta_{-\lambda}(r)) - r + \end{align*} + is a polynomial extension of the zero map \(\ZZ \beta_1 \oplus \cdots \oplus + \ZZ \beta_n \to \Sigma^{-1} \mathcal{U}(\mathfrak{g})\) and is therefore + identicaly zero. + + Finally, let \(M\) be a \(\Sigma^{-1} \mathcal{U}(\mathfrak{g})\)-module + whose restriction is a weight module. If \(m \in M\) then + \[ + m \in (\theta_\lambda M)_{\mu + \lambda} + \iff \theta_\lambda(H) m = (\mu + \lambda)(H) \cdot m + \, \forall H \in \mathfrak{h} + \] + + But + \[ + \theta_\beta(H) + = F_\beta H F_\beta^{-1} + = ([F_\beta, H] + H F_\beta) F_\beta^{-1} + = (\beta(H) + H) F_\beta F_\beta^{-1} + = \beta(H) + H + \] + for all \(H \in \mathfrak{h}\) and \(\beta \in \Sigma\). In general, + \(\theta_\lambda(H) = \lambda(H) + H\) for all \(\lambda \in \mathfrak{h}^*\) + and hence + \[ + \begin{split} + m \in (\theta_\lambda M)_{\mu + \lambda} + & \iff (\lambda(H) + H) m = (\mu + \lambda)(H) \cdot m + \; \forall H \in \mathfrak{h} \\ + & \iff H m = \mu(H) \cdot m \; \forall H \in \mathfrak{h} \\ + & \iff m \in M_\mu + \end{split}, + \] + so that \((\theta_\lambda M)_{\mu + \lambda} = M_\mu\). +\end{proof} + +\begin{proposition}[Mathieu] + There exists a coherent extension \(\mathcal{M}\) of \(V\). +\end{proposition} + +\begin{proof} + Let \(\Lambda\) be a set of representatives of the \(Q\)-cosets in + \(\mathfrak{h}^*\) with \(0 \in \Lambda\) and take + \[ + \mathcal{M} + = \bigoplus_{\lambda \in \Lambda} \theta_\lambda \Sigma^{-1} V + \] + + On the one hand, \(V\) lies in \(\Sigma^{-1} V = \theta_0 \Sigma^{-1} V\) -- + notice that \(\theta_0\) is just the identity operator -- and therefore \(V + \subset \mathcal{M}\). On the other hand, \(\dim \mathcal{M}_\mu = \dim + \theta_\lambda \Sigma^{-1} V_\mu = \dim \Sigma^{-1} V_{\mu - \lambda} = d\) + for all \(\mu \in \lambda + Q\), \(\lambda \in \Lambda\). Furtheremore, given + \(u \in \mathcal{U}(\mathfrak{g})_0\) and \(\mu \in \lambda + + Q\), + \[ + \operatorname{Tr}(u\!\restriction_{\mathcal{M}_\mu}) + = \operatorname{Tr} + (\theta_\lambda(u)\!\restriction_{\Sigma^{-1} V_{\mu - \lambda}}) + \] + is polynomial in \(\mu\) because of the second item of + proposition~\ref{thm:nice-automorphisms-exist}. +\end{proof} + +\begin{theorem}[Mathieu] + There exists a unique completely reducible coherent extension + \(\operatorname{Ext}(V)\) of \(V\). More precisely, if \(\mathcal{M}\) is any + coherent extension of \(V\), then \(\mathcal{M}^{\operatorname{ss}} \cong + \operatorname{Ext}(V)\). Furthermore, \(\operatorname{Ext}(V)\) is + irreducible as a coherent family. +\end{theorem} + +\begin{proof} + The existence part should be clear from the previous discussion: it suffices + to fix some coherent extension \(\mathcal{M}\) of \(V\) and take + \(\operatorname{Ext}(V) = \mathcal{M}^{\operatorname{ss}}\). + + To see that \(\operatorname{Ext}(V)\) is irreducible as a coherent family, + recall from corollary~\ref{thm:admissible-is-submod-of-extension} that \(V\) + is a subrepresentation of \(\operatorname{Ext}(V)\). Since the degree of + \(V\) is the same as the degree of \(\operatorname{Ext}(V)\), some of its + weight spaces have maximal dimension inside of \(\operatorname{Ext}(V)\). In + particular, it follows from proposition~\ref{thm:centralizer-multiplicity} + that \(\operatorname{Ext}(V)_\lambda = V_\lambda\) is a simple + \(\mathcal{U}(\mathfrak{g})_0\)-module for some \(\lambda \in + \operatorname{supp} V\). + + As for the uniqueness of \(\operatorname{Ext}(V)\), fix some other completely + reducible coherent extension \(\mathcal{N}\) of \(V\). We claim that the + multiplicity of a given irreducible \(\mathfrak{g}\)-module \(W\) in + \(\mathcal{N}\) is determined by its \emph{trace function} + \begin{align*} + \mathfrak{h}^* \times \mathcal{U}(\mathfrak{g})_0 & + \to K \\ + (\lambda, u) & + \mapsto \operatorname{Tr}(u\!\restriction_{\mathcal{N}_\lambda}) + \end{align*} + + % TODO: Point out that this multiplicity is determined by the characters + % beforehand + Indeed, given \(\lambda \in \operatorname{supp} V\) the multiplicity of \(W\) + in \(\mathcal{N}\) is the same as the multiplicity of \(W_\lambda\) in + \(\mathcal{N}_\lambda\), which is determined by the character + \(\chi_{\mathcal{N}_\lambda} : \mathcal{U}(\mathfrak{g})_0 + \to K\) -- see proposition~\ref{thm:centralizer-multiplicity}. We now claim + that the trace function of \(\mathcal{N}\) is the same as that of + \(\operatorname{Ext}(V)\). Clearly, + \(\operatorname{Tr}(u\!\restriction_{\operatorname{Ext}(V)_\lambda}) + = \operatorname{Tr}(u\!\restriction_{V_\lambda}) + = \operatorname{Tr}(u\!\restriction_{\mathcal{N}_\lambda})\) for all + \(\lambda \in \operatorname{supp}_{\operatorname{ess}} V\), \(u \in + \mathcal{U}(\mathfrak{g})_0\). Since the essential support of + \(V\) is Zariski-dense and the maps \(\lambda \mapsto + \operatorname{Tr}(u\!\restriction_{\operatorname{Ext}(V)_\lambda})\) and + \(\lambda \mapsto \operatorname{Tr}(u\!\restriction_{\mathcal{N}_\lambda})\) + are polynomial in \(\lambda \in \mathfrak{h}^*\), it follows that this maps + coincide for all \(u\). + + In conclusion, \(\mathcal{N} \cong \operatorname{Ext}(V)\) and + \(\operatorname{Ext}(V)\) is unique. +\end{proof} + +\begin{proposition}[Mathieu] + The central characters of the irreducible submodules of + \(\operatorname{Ext}(V)\) are all the same. +\end{proposition}
diff --git a/sections/mathieu.tex b/sections/mathieu.tex @@ -183,23 +183,24 @@ % TODO: Remark that the support of a simple weight module is always contained % in a coset -% TODO: Note that conditions (ii), (iii) and (iv) have special names -% TODO: Remove item (ii)? I don't think we use it anywhere \begin{corollary}[Fernando]\label{thm:cuspidal-mod-equivs} Let \(V\) be an irreducible weight \(\mathfrak{g}\)-module. The following conditions are equivalent. \begin{enumerate} \item \(V\) is cuspidal. - \item \(E_\alpha\) acts injectively in \(V\) for all \(\alpha \in \Delta\). - \item \(F_\alpha\) acts injectively in \(V\) for all \(\alpha \in \Delta\). - \item The support of \(V\) is precisely one \(Q\)-coset. + \item \(F_\alpha\) acts injectively\footnote{This is what's usually refered + to as a \emph{dense} representation in the literature.} in \(V\) for all + \(\alpha \in \Delta\). + \item The support of \(V\) is precisely one \(Q\)-coset\footnote{This is + what's usually referred to as a \emph{torsion-free} representation in the + literature.}. \end{enumerate} \end{corollary} \begin{example} - As noted in example~\ref{ex:laurent-polynomial-mod}, the elements \(e, f \in - \mathfrak{sl}_2(K)\) both act injectively in the space of Laurent - polynomials. Hence \(K[x, x^{-1}]\) is a cuspidal representation of + As noted in example~\ref{ex:laurent-polynomial-mod}, the element \(f \in + \mathfrak{sl}_2(K)\) acts injectively in the space of Laurent polynomials. + Hence \(K[x, x^{-1}]\) is a cuspidal representation of \(\mathfrak{sl}_2(K)\). \end{example}