- Commit
- 7ac14065fa9425653bcbf4f02cf7a9dca537c6c4
- Parent
- bc27a9d3c79956b4e682c2fe5d9ad2363aae8463
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Minor corrections
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Minor corrections
1 file changed, 4 insertions, 5 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/mathieu.tex | 9 | 4 | 5 |
diff --git a/sections/mathieu.tex b/sections/mathieu.tex @@ -328,19 +328,18 @@ Let \(S \subset R\) be a multiplicative subset satisfying Ore's localization condition and \(M\) be a \(R\)-module. If \(S\) acts injectively in \(M\) then the localization map \(M \to S^{-1} M\) is injective. In particular, if - \(S\) has no left zero divisors then \(R\) is a subring of \(S^{-1} R\). + \(S\) has no zero divisors then \(R\) is a subring of \(S^{-1} R\). \end{lemma} % TODO: Point out that S^-1 M can be seen as a R-module, where R acts via the % localization map % TODO: Point out that each element of the localization has the form s^-1 r -% TODO: Define what a set commuting roots is \begin{lemma}\label{thm:nice-basis-for-inversion} Let \(V\) be an irreducible infinite-dimensional admissible \(\mathfrak{g}\)-module. There is a basis \(\Sigma = \{\beta_1, \ldots, - \beta_n\}\) of \(\Delta\) consisting a commuting roots and such that the - elements \(F_{\beta_i}\) all act injectively on \(V\). + \beta_n\}\) of \(\Delta\) such that the elements \(F_{\beta_i}\) all act + injectively on \(V\) and satisfy \([F_{\beta_i}, F_{\beta_j}] = 0\). \end{lemma} \begin{corollary} @@ -356,7 +355,7 @@ % TODO: Fix V and Sigma beforehand \begin{proposition}\label{thm:irr-admissible-is-contained-in-nice-mod} - The the restriction of the localization \(\Sigma^{-1} V\) is a weight + The the restriction of the localization \(\Sigma^{-1} V\) is an admissible \(\mathfrak{g}\)-module of degree \(d\) with \(\operatorname{supp} \Sigma^{-1} V = Q + \operatorname{supp} V\) and \(\dim \Sigma^{-1} V_\lambda = d\) for all \(\lambda \in \operatorname{supp} \Sigma^{-1} V\).