- Commit
- bc27a9d3c79956b4e682c2fe5d9ad2363aae8463
- Parent
- a0c44092379f3c76c821f58540252c59105e031e
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Fixed some typos
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Fixed some typos
1 file changed, 11 insertions, 12 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/mathieu.tex | 23 | 11 | 12 |
diff --git a/sections/mathieu.tex b/sections/mathieu.tex @@ -41,24 +41,23 @@ \] is a weight module. It is clear that \(\mfrac{V_\lambda}{W} \subset \left(\mfrac{V}{W}\right)_\lambda\). To see that \(\mfrac{V_\lambda}{W} = - \left(\mfrac{V}{W}\right)_\lambda\), we remark that \(V_\lambda \cong V - \otimes_{\mathcal{U}(\mathfrak{h})} - \mfrac{\mathcal{U}(\mathfrak{h})}{\mathfrak{m}_\lambda}\) as - \(\mathfrak{h}\)-modules, where \(\mathfrak{m}_\lambda \normal - \mathcal{U}(\mathfrak{h})\) is the left ideal generated by the elements \(H - - \lambda(H)\), \(H \in \mathfrak{h}\). Likewise - \(\left(\mfrac{V}{W}\right)_\lambda \cong \mfrac{V}{W} - \otimes_{\mathcal{U}(\mathfrak{h})} - \mfrac{\mathcal{U}(\mathfrak{h})}{\mathfrak{m}_\lambda}\) and the diagram + \left(\mfrac{V}{W}\right)_\lambda\), we remark that \(V_\lambda \cong + \mfrac{\mathcal{U}(\mathfrak{h})}{\mathfrak{m}_\lambda} + \otimes_{\mathcal{U}(\mathfrak{h})} V\) as \(\mathfrak{h}\)-modules, where + \(\mathfrak{m}_\lambda \normal \mathcal{U}(\mathfrak{h})\) is the left ideal + generated by the elements \(H - \lambda(H)\), \(H \in \mathfrak{h}\). + Likewise \(\left(\mfrac{V}{W}\right)_\lambda \cong + \mfrac{\mathcal{U}(\mathfrak{h})}{\mathfrak{m}_\lambda} + \otimes_{\mathcal{U}(\mathfrak{h})} \mfrac{V}{W}\) and the diagram \begin{center} \begin{tikzcd} V_\lambda \arrow{d} \arrow{r}{\pi} & \left(\mfrac{V}{W}\right)_\lambda \arrow{d} \\ - V \otimes_{\mathcal{U}(\mathfrak{h})} \mfrac{\mathcal{U}(\mathfrak{h})}{\mathfrak{m}_\lambda} + \otimes_{\mathcal{U}(\mathfrak{h})} V \arrow[swap]{r}{\pi \otimes \operatorname{id}} & - \mfrac{V}{W} \otimes_{\mathcal{U}(\mathfrak{h})} \mfrac{\mathcal{U}(\mathfrak{h})}{\mathfrak{m}_\lambda} + \otimes_{\mathcal{U}(\mathfrak{h})} \mfrac{V}{W} \end{tikzcd} \end{center} commutes, so that the projection \(V_\lambda \to @@ -266,7 +265,7 @@ \end{enumerate} \end{theorem} -\section{Localizations \& Existance of Coherent Extensions} +\section{Localizations \& the Existance of Coherent Extensions} % TODO: Comment on the intuition behind the proof: we can get vectors in a % given eigenspace by translating by the F's and E's, but neither of those are