- Commit
- 7b33177ac8285ec8e8898e26dccf0bb8d2514fcb
- Parent
- 4c9106518e86b93cae96aff8b5027c92b9373d1a
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Added a proof
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Added a proof
1 file changed, 84 insertions, 1 deletion
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/coherent-families.tex | 85 | 84 | 1 |
diff --git a/sections/coherent-families.tex b/sections/coherent-families.tex @@ -1,7 +1,6 @@ \chapter{Classification of Coherent Families} % TODOOO: Is this decomposition unique?? -% TODOO: Prove this \begin{proposition} Suppose \(\mathfrak{g} = \mathfrak{s}_1 \oplus \cdots \oplus \mathfrak{s}_r\) and let \(\mathcal{M}\) be a semisimple irreducible coherent @@ -12,6 +11,90 @@ \] \end{proposition} +\begin{proof} + Suppose \(\mathfrak{h}_i \subset \mathfrak{s}_i\) are Cartan subalgebras, + \(\mathfrak{h} = \mathfrak{h}_1 \oplus \cdots \oplus \mathfrak{h}_r\) and \(d + = \deg \mathcal{M}\). Let \(M \subset \mathcal{M}\) be any + infinite-dimensional simple submodule, so that \(\mathcal{M}\) is a + semisimple coherent extension of \(M\). By + Example~\ref{thm:simple-weight-mod-is-tensor-prod}, there exists (unique) + simple weight \(\mathfrak{s}_i\)-modules \(M_i\) such that \(M \cong M_1 + \otimes \cdots \otimes M_r\). Take \(\mathcal{M}_i = \mExt(M_i)\). We will + show that \(\mathcal{M}_1 \otimes \cdots \mathcal{M}_r\) is a coherent + extension of \(M\). + + It is clear that \(\mathcal{M}_1 \otimes \cdots \otimes \mathcal{M}_r\) is a + degree \(d\) bounded \(\mathfrak{g}\)-module containing \(M\) as a submodule. + It thus suffices to show that \(\mathcal{M}\) is a coherent family. By + Example~\ref{ex:supp-ess-of-tensor-is-product}, + \(\operatorname{supp}_{\operatorname{ess}} (\mathcal{M}_1 \otimes \cdots + \otimes \mathcal{M}_r) = \mathfrak{h}^*\). To see that the map + \begin{align*} + \mathfrak{h}^* & \to K \\ + \lambda & \mapsto + \operatorname{Tr} + ( + u\! \restriction_{(\mathcal{M}_1 \otimes \cdots \otimes \mathcal{M}_r)_\lambda} + ) + \end{align*} + is polynomial, notice that the natural isomorphism of algebras + \begin{align*} + f : \mathcal{U}(\mathfrak{s}_1) \otimes \cdots \mathcal{U}(\mathfrak{s}_1) + & \isoto \mathcal{U}(\mathfrak{g}) \\ + u_1 \otimes \cdots \otimes u_r & \mapsto u_1 \cdots u_r + \end{align*} + described in Example~\ref{ex:univ-enveloping-of-sum-is-tensor} is a + \(\mathfrak{g}\)-homomorphism between the tensor product of the adjoint + \(\mathfrak{s}_i\)-modules \(\mathcal{U}(\mathfrak{s}_i)\) and the adjoint + \(\mathfrak{g}\)-module \(\mathcal{U}(\mathfrak{g})\). + + Indeed, given \(X = X_1 + \cdots + X_r \in \mathfrak{g}\) with \(X_i \in + \mathfrak{s}_i\) and \(u_i \in \mathcal{U}(\mathfrak{s}_i)\), + \[ + \begin{split} + f(X \cdot (u_1 \otimes \cdots \otimes u_r)) + & = f([X_1, u_1] \otimes u_2 \otimes \cdots \otimes u_r) + + \cdots + + f(u_1 \otimes \cdots \otimes u_{r-1} \otimes [X_r, u_r]) \\ + & = [X_1, u_1] u_2 \cdots u_r + \cdots + u_1 \cdots u_{r-1} [X_r, u_r] \\ + \text{(\([X_i, u_j] = 0\) for \(i \ne j\))} + & = [X_1, u_1u_2 \cdots u_r] + \cdots + [X_r, u_1 \cdots u_{r-1}u_r] \\ + & = [X, f(u_1 \otimes \cdots \otimes u_r)] + \end{split} + \] + + Hence by Example~\ref{ex:adjoint-action-in-universal-enveloping-is-weight} + \(f\) restricts to an isomorphism of algebras \(\mathcal{U}(\mathfrak{s}_1)_0 + \otimes \cdots \otimes \mathcal{U}(\mathfrak{s}_r)_0 \isoto + \mathcal{U}(\mathfrak{g})_0\) with image \(\mathcal{U}(\mathfrak{g})_0 = + \mathcal{U}(\mathfrak{s}_1)_0 \cdots \mathcal{U}(\mathfrak{s}_r)_0\). More + importantly, if we write \(\lambda = \lambda_1 + \cdots + \lambda_r\) for + \(\lambda_i \in \mathfrak{h}_i^*\) it is clear from + Example~\ref{ex:tensor-prod-of-weight-is-weight} that the + \(\mathcal{U}(\mathfrak{g})_0\)-module \((\mathcal{M}_1 \otimes \cdots + \otimes \mathcal{M}_r)_\lambda\) corresponds to exactly the + \(\mathcal{U}(\mathfrak{s}_1)_0 \otimes \cdots \otimes + \mathcal{U}(\mathfrak{s}_r)_0\)-module \((\mathcal{M}_1)_{\lambda_1} \otimes + \cdots \otimes (\mathcal{M}_r)_{\lambda_r}\), so we can see that the value + \[ + \operatorname{Tr} + ( + u_1 \cdots u_r \!\restriction_{(\mathcal{M}_1 \otimes \cdots \otimes \mathcal{M}_r)_\lambda} + ) + = \operatorname{Tr}(u_1\!\restriction_{(\mathcal{M}_1)_{\lambda_1}}) + \cdots + \operatorname{Tr}(u_r\!\restriction_{(\mathcal{M}_r)_{\lambda_r}}) + \] + varies polynomially with \(\lambda \in \mathfrak{h}^*\) for all \(u_i \in + \mathcal{U}(\mathfrak{s}_i)_0\). + + Finally, \(\mathcal{M}_1 \otimes \cdots \otimes \mathcal{M}_r\) is a coherent + extension of \(M\). Since the \(\mathcal{M}_i = \mExt(M_i)\) are semisimple, + so is \(\mathcal{M}_1 \otimes \cdots \otimes \mathcal{M}_r\). It thus + follows from the uniqueness of semisimple coherent extensions that + \(\mathcal{M} \cong \mathcal{M}_1 \otimes \cdots \otimes \mathcal{M}_r\). +\end{proof} + % TODO: Rework this In addition, it turns out that very few simple Lie algebras admit cuspidal modules at all. Specifically\dots