lie-algebras-and-their-representations

Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules

Commit
7fc1115cc9893d9adfed034213408f1443d557a4
Parent
b9d6e063dfd03f344ff056bc281ccd600aac8ee3
Author
Pablo <pablo-escobar@riseup.net>
Date

Fixed a typo

Diffstat

1 file changed, 1 insertion, 1 deletion

Status File Name N° Changes Insertions Deletions
Modified sections/coherent-families.tex 2 1 1
diff --git a/sections/coherent-families.tex b/sections/coherent-families.tex
@@ -360,7 +360,7 @@ It should then be obvious that\dots
 
 % TODO: Prove this
 \begin{theorem}[Mathieu]
-  Given \(\lambda, \mu \in P^+\) with \(L(\lambda)\) and \(L(\mu)\) bounded,
+  Given \(\lambda, \mu \notin P^+\) with \(L(\lambda)\) and \(L(\mu)\) bounded,
   \(\mExt(L(\lambda)) \cong \mExt(L(\mu))\) if, and only if \(m(\lambda)\) and
   \(m(\mu)\) lie in the same connected component of \(\mathcal{P}\). In
   particular, the isomorphism classes of semisimple irreducible coherent