- Commit
- 7fc1115cc9893d9adfed034213408f1443d557a4
- Parent
- b9d6e063dfd03f344ff056bc281ccd600aac8ee3
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Fixed a typo
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Fixed a typo
1 file changed, 1 insertion, 1 deletion
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/coherent-families.tex | 2 | 1 | 1 |
diff --git a/sections/coherent-families.tex b/sections/coherent-families.tex @@ -360,7 +360,7 @@ It should then be obvious that\dots % TODO: Prove this \begin{theorem}[Mathieu] - Given \(\lambda, \mu \in P^+\) with \(L(\lambda)\) and \(L(\mu)\) bounded, + Given \(\lambda, \mu \notin P^+\) with \(L(\lambda)\) and \(L(\mu)\) bounded, \(\mExt(L(\lambda)) \cong \mExt(L(\mu))\) if, and only if \(m(\lambda)\) and \(m(\mu)\) lie in the same connected component of \(\mathcal{P}\). In particular, the isomorphism classes of semisimple irreducible coherent