lie-algebras-and-their-representations

Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules

Commit
9758560c086e0e3fd92a84cd2050f92acea1dbba
Parent
4f991107e2279b85fd1a50e4c13a5a5928da4eda
Author
Pablo <pablo-escobar@riseup.net>
Date

Minor styling tweak

Diffstat

1 file changed, 2 insertions, 2 deletions

Status File Name N° Changes Insertions Deletions
Modified sections/sl2-sl3.tex 4 2 2
diff --git a/sections/sl2-sl3.tex b/sections/sl2-sl3.tex
@@ -584,8 +584,8 @@ In general, we find\dots
                   c & \tm{bottomA}{0} &             -a
     \end{pmatrix}
     = \begin{pmatrix} a & b \\ c & -a \end{pmatrix}
-    \DrawVLine[black, thick, opacity=0.5]{topA}{bottomA}
-    \DrawHLine[black, thick, opacity=0.5]{leftA}{rightA}
+    \DrawVLine[black]{topA}{bottomA}
+    \DrawHLine[black]{leftA}{rightA}
   \end{align*}
   is an isomorphism of Lie algebras. In general, the map
   \begin{align*}