lie-algebras-and-their-representations

Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules

Commit
9c254f28439268d83e9e55efc47a440391717f32
Parent
a4e3dcf245e59a78908cf7e4a88ad05b7cfd22db
Author
Pablo <pablo-escobar@riseup.net>
Date

Fixed a typo

Diffstat

1 file changed, 1 insertion, 1 deletion

Status File Name N° Changes Insertions Deletions
Modified sections/complete-reducibility.tex 2 1 1
diff --git a/sections/complete-reducibility.tex b/sections/complete-reducibility.tex
@@ -258,7 +258,7 @@ to introduce some basic tools which will come in handy later on, known as\dots
   \mathfrak{g} \to \mathfrak{g}\) is antisymmetric with respect to \(B\) for
   all \(X \in \mathfrak{g}\).
   \[
-    B(\operatorname{ad}(X) Y, Z) + B(Y, \operatorname{ad}(Y) Z) = 0
+    B(\operatorname{ad}(X) Y, Z) + B(Y, \operatorname{ad}(X) Z) = 0
   \]
 \end{definition}