- Commit
- 9e110cc457ac5ee80f9a3d4d6f69b761597acb2d
- Parent
- 391ae2aa9fe9a96f0c7166a675c351a1e07391c0
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Tweaked the formating of a commutative diagram
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Tweaked the formating of a commutative diagram
1 file changed, 6 insertions, 6 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/mathieu.tex | 12 | 6 | 6 |
diff --git a/sections/mathieu.tex b/sections/mathieu.tex @@ -496,15 +496,15 @@ \begin{theorem}[Ore-Asano] Let \(S \subset R\) be a multiplicative subset satisfying Ore's localization condition. Then there exists a (unique) ring \(S^{-1} R\), with a canonical - ring homomorphism \(R \to S^{-1} R\), and enjoying the universal property that - each ring homomorphism \(f : R \to T\) such that \(f(s)\) is invertible for - all \(s \in S\) can be uniquely extended to a ring homomorphism \(S^{-1} R - \to T\). \(S^{-1} R\) is called \emph{the localization of \(R\) by \(S\)}, + ring homomorphism \(R \to S^{-1} R\), and enjoying the universal property + that each ring homomorphism \(f : R \to T\) such that \(f(s)\) is invertible + for all \(s \in S\) can be uniquely extended to a ring homomorphism \(S^{-1} + R \to T\). \(S^{-1} R\) is called \emph{the localization of \(R\) by \(S\)}, and the map \(R \to S^{-1} R\) is called \emph{the localization map}. \begin{center} \begin{tikzcd} - S^{-1} R \rar[dotted] & T \\ - R \arrow{u} \arrow[swap]{ur}{f} & + S^{-1} R \arrow[dotted]{rd} & \\ + R \arrow{u} \arrow[swap]{r}{f} & T \end{tikzcd} \end{center} \end{theorem}