- Commit
- aa77f55317d6bcb2121c894e521da726fb4b68ca
- Parent
- 88fc21975aa53fb4a9d3bd9dbba6ecd603f05c38
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Demoted a proposition to a lemma
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Demoted a proposition to a lemma
1 file changed, 4 insertions, 4 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/coherent-families.tex | 8 | 4 | 4 |
diff --git a/sections/coherent-families.tex b/sections/coherent-families.tex @@ -95,14 +95,14 @@ combinatorial counterpart. % TODO: Remark that the probability of σ_β ∙ λ ∈ P+ is slight: there precisely % one element in the orbit of λ which is dominant integral, so the odds are % 1/|W ∙ λ| -\begin{proposition}\label{thm:lemma6.1} +\begin{lemma}\label{thm:lemma6.1} Let \(\beta \in \Sigma\) and \(\lambda \notin P^+\) be such that. \(L(\lambda)\) is bounded and \(\lambda(H_\beta) \notin \mathbb{N}\). Then \(L(\sigma_\beta \bullet \lambda) \subset \mExt(L(\lambda))\). In particular, if \(\sigma_\beta \bullet \lambda \notin P^+\) then \(L(\sigma_\beta)\) is a bounded infinite-dimensional \(\mathfrak{g}\)-module and \(\mExt(L(\sigma_\beta \bullet \lambda)) \cong \mExt(L(\lambda))\). -\end{proposition} +\end{lemma} % TODOO: Treat the case of sl(2) here @@ -220,7 +220,7 @@ Example~\ref{ex:sp-canonical-basis}. Also fix \(\rho = \sfrac{1}{2} \beta_1 + = \sigma_n \bullet \lambda\). Since \(m(\lambda) \in \mathscr{B}\), \(\lambda(H_{\beta_n}) \in \sfrac{1}{2} + \mathbb{Z}\) and thus \(\lambda(H_{\beta_n}) \notin \mathbb{N}\). Hence by - Proposition~\ref{thm:lemma6.1} \(L(\mu) \subset \mExt(L(\lambda))\) and + Lemma~\ref{thm:lemma6.1} \(L(\mu) \subset \mExt(L(\lambda))\) and \(\mExt(L(\mu)) \cong \mExt(L(\lambda))\). For each semisimple irreducible coherent \(\mathfrak{sp}_{2n}(K)\)-family @@ -482,7 +482,7 @@ all \(i\) and \(j\). % Great migué In this situation, \(m(\mu) \in \mathscr{B}^+\) implies \(\mu(H_{\beta_1}) = m(\mu)_1 - m(\mu)_2 \in \mathbb{Z}\) is negative. But it follows from - Proposition~\ref{thm:lemma6.1} that for each \(\beta \in \Sigma\) there is at + Lemma~\ref{thm:lemma6.1} that for each \(\beta \in \Sigma\) there is at most one \(\mu \notin P^+\) with \(\mExt(L(\mu)) \cong \mExt(L(\lambda))\) such that \(\mu(H_\beta)\) is a negative integer -- see Lemma~6.5 of \cite{mathieu}. Hence there is at most one \(m' \in \mathscr{B}^+ \cap W