lie-algebras-and-their-representations

Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules

Commit
c7ec3b4563fa84564b9ae1a0770c884268788827
Parent
da5c06bd3e86cf0ae7adea2fdf6d0b42993042e3
Author
Pablo <pablo-escobar@riseup.net>
Date

Changed the spacing of the diagrams on the connected components of 𝓑

Diffstat

1 file changed, 2 insertions, 2 deletions

Status File Name N° Changes Insertions Deletions
Modified sections/coherent-families.tex 4 2 2
diff --git a/sections/coherent-families.tex b/sections/coherent-families.tex
@@ -355,7 +355,7 @@ all \(i\) and \(j\).
       \(m' \in W \cdot m\), in which case the connected component of \(m\) is
       given by
       \[
-        \begin{tikzcd}[cramped, sep=small]
+        \begin{tikzcd}[cramped, row sep=small]
           \sigma_1 \sigma_2 \cdots \sigma_i \cdot m'           \rar &
           \sigma_2 \cdots \sigma_i \cdot m'                    \rar &
           \cdots                                               \rar &
@@ -382,7 +382,7 @@ all \(i\) and \(j\).
       and \((m_{i + 1}', \ldots, m_n')\) are ordered, in which case the
       connected component of \(m\) is given by
       \[
-        \begin{tikzcd}[cramped, sep=small]
+        \begin{tikzcd}[cramped, row sep=small]
           \sigma_1 \sigma_2 \cdots \sigma_{i-1} \cdot m'       \rar &
           \sigma_2 \cdots \sigma_{i-1} \cdot m'                \rar &
           \cdots                                               \rar &