- Commit
- c944e8c3946fdde771366101c59c4b52511a52a9
- Parent
- 0cda277464d901b72135fb7e2f092c3c41d1a6c0
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Added a description of the weight spaces of a subrepresentation of a weight module
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Added a description of the weight spaces of a subrepresentation of a weight module
1 file changed, 3 insertions, 2 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/mathieu.tex | 5 | 3 | 2 |
diff --git a/sections/mathieu.tex b/sections/mathieu.tex @@ -26,8 +26,9 @@ proposition~\ref{thm:max-verma-submod-is-weight} imply that the Verma module \(M(\lambda)\) and its maximal subrepresentation are both weight modules. In fact, the proof of proposition~\ref{thm:max-verma-submod-is-weight} is - actually a proof of the fact that every subrepresentation of a weight module - is a weight module. + actually a proof of the fact that every subrepresentation \(W \subset V\) of + a weight module \(V\) is a weight module, and \(W_\lambda = V_\lambda \cap + W\) for all \(\lambda \in \mathfrak{h}^*\). \end{example} \begin{example}