- Commit
- d16a340f6b4df5c2bbc75d4da4fb27372adcca2d
- Parent
- 7e9e9bc4fa3f8a3a3c898334bc0c38a5c5f18762
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Minor tweak in notation
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Minor tweak in notation
1 file changed, 1 insertion, 1 deletion
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/complete-reducibility.tex | 2 | 1 | 1 |
diff --git a/sections/complete-reducibility.tex b/sections/complete-reducibility.tex @@ -336,7 +336,7 @@ characterization of finite-dimensional semisimple Lie algebras, known as \kappa_M : \mathfrak{g} \times \mathfrak{g} & \to K \\ (X, Y) & - \mapsto \operatorname{Tr}(X\!\restriction_M \circ Y\!\restriction_M) + \mapsto \operatorname{Tr}(X\!\restriction_M \, Y\!\restriction_M) \end{align*} is non-degenerate\footnote{A symmetric bilinear form $B : \mathfrak{g} \times \mathfrak{g} \to K$ is called non-degenerate if $B(X, Y) = 0$ for