- Commit
- d485955b90bfe5f191dff4cc958d34fe18e08cd4
- Parent
- 9955d391c0617ce48faf164b8e74b0a818376d51
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Fixed multiple typos
Also added some TODO items
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Fixed multiple typos
Also added some TODO items
1 file changed, 24 insertions, 23 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/mathieu.tex | 47 | 24 | 23 |
diff --git a/sections/mathieu.tex b/sections/mathieu.tex @@ -186,8 +186,10 @@ % comes from the relationship between highest weight modules and coherent % families +% TODOO: I think this is equivalent to M being a simple object in the +% category of coherent families. This is perhaps a more intuitive formulation \begin{definition} - A coherent family \(\mathcal{M}\) called \emph{irreducible} if + A coherent family \(\mathcal{M}\) is called \emph{irreducible} if \(\mathcal{M}_\lambda\) is a simple \(\mathcal{U}(\mathfrak{g})_0\)-module for some \(\lambda \in \mathfrak{h}^*\). @@ -277,8 +279,7 @@ = d \] - Likewise, given \(u \in \mathcal{U}(\mathfrak{g})_0\) the - number + Likewise, given \(u \in \mathcal{U}(\mathfrak{g})_0\) the value \[ \operatorname{Tr}(u\!\restriction_{\mathcal{M}_\mu^{\operatorname{ss}}}) = \sum_j @@ -382,8 +383,8 @@ \operatorname{End}(\mathcal{M}_\lambda)) = \operatorname{rank}(\operatorname{End}(\mathcal{M}_\lambda)^* \to \mathcal{U}(\mathfrak{g})_0^*)\), imply that \(\operatorname{rank} B_\lambda - = d^2\). Hence \(U\) is precisely the set of \(\lambda\) such that - \(B_\lambda\) has maximal rank \(d^2\). We now show that \(U\) is + = d^2\). This goes to show that \(U\) is precisely the set of \(\lambda\) + such that \(B_\lambda\) has maximal rank \(d^2\). We now show that \(U\) is Zariski-open. First, notice that \[ U = @@ -517,8 +518,8 @@ \begin{lemma} Let \(S \subset R\) be a multiplicative subset generated by locally \(\operatorname{ad}\)-nilpotent elements -- i.e. elements \(s \in S\) such - that for each \(r \in R\) there \(\operatorname{ad}(s)^n r = [s, [s, \cdots - [s, r]]\cdots] = 0\) for sufficiently large \(n\). Then \(S\) satisfies Ore's + that for each \(r \in R\) there exists \(n > 0\) such that \(\operatorname{ad}(s)^n r = [s, [s, \cdots + [s, r]]\cdots] = 0\). Then \(S\) satisfies Ore's localization condition. \end{lemma} @@ -548,6 +549,7 @@ % localization map % TODO: Point out that each element of the localization has the form s^-1 r +% TODO: Point out that Sigma depends on V! \begin{lemma}\label{thm:nice-basis-for-inversion} Let \(V\) be an irreducible infinite-dimensional admissible \(\mathfrak{g}\)-module. There is a basis \(\Sigma = \{\beta_1, \ldots, @@ -574,11 +576,11 @@ \end{proposition} \begin{proof} - Fix some \(\beta \in \Sigma\). We begin by show that \(F_\beta\) and - \(F_\beta^{-1}\) map the weight space \(V_\lambda\) to the weight spaces - \(\Sigma^{-1} V_{\lambda - \beta}\) and \(\Sigma^{-1} V_{\lambda + \beta}\) - respectively. Indeed, given \(v \in V_\lambda\) and \(H \in \mathfrak{h}\) we - have + Fix some \(\beta \in \Sigma\). We begin by showing that \(F_\beta\) and + \(F_\beta^{-1}\) map the weight space \(\Sigma^{-1} V_\lambda\) to the weight + spaces \(\Sigma^{-1} V_{\lambda - \beta}\) and \(\Sigma^{-1} V_{\lambda + + \beta}\) respectively. Indeed, given \(v \in V_\lambda\) and \(H \in + \mathfrak{h}\) we have \[ H F_\beta v = ([H, F_\beta] + F_\beta H)v @@ -600,7 +602,7 @@ H F_\beta^{-1} v = ([H, F_\beta^{-1}] + F_\beta^{-1} H) v = F_\beta^{-1} (\beta(H) + H) v - = F_\beta^{-1} (\lambda + \beta)(H) \cdot v + = (\lambda + \beta)(H) \cdot F_\beta^{-1} v \] From the fact that \(F_\beta^{\pm 1}\) maps \(V_\lambda\) to \(\Sigma^{-1} @@ -620,12 +622,11 @@ finite-dimensional subspace \(W \subset \Sigma^{-1} V_\lambda\) we can find \(s \in (F_\beta)_{\beta \in \Sigma}\) such that \(s W \subset V\). If \(s = F_{\beta_{i_1}} \cdots F_{\beta_{i_n}}\), it is clear \(s W \subset - V_{\lambda - \beta_{i_1} - \cdots - \beta_{i_n}}\), so \(\dim W \le d\) -- - \(s\) is injective. This holds for all finite-dimensional \(W \subset - \Sigma^{-1} V_\lambda\), so \(\dim \Sigma^{-1} V_\lambda \le d\). It then - follows from the fact that \(V_\lambda \subset \Sigma^{-1} V_\lambda\) that - \(V_\lambda = \Sigma^{-1} V_\lambda\) and therefore \(\dim - \Sigma^{-1}_\lambda = d\). + V_{\lambda - \beta_{i_1} - \cdots - \beta_{i_n}}\), so \(\dim W = \dim sW \le + d\). This holds for all finite-dimensional \(W \subset \Sigma^{-1} + V_\lambda\), so \(\dim \Sigma^{-1} V_\lambda \le d\). It then follows from + the fact that \(V_\lambda \subset \Sigma^{-1} V_\lambda\) that \(V_\lambda = + \Sigma^{-1} V_\lambda\) and therefore \(\dim \Sigma^{-1} V_\lambda = d\). \end{proof} \begin{proposition}\label{thm:nice-automorphisms-exist} @@ -688,8 +689,8 @@ for all \(k_1, \ldots, k_n \in \NN\). Since the binomial coeffients \(\binom{x}{k} = \frac{x (x -1) \cdots (x - k + - 1)}{k!}\) can be uniquely extended to polynomial functions in \(x\), we may - in general define + 1)}{k!}\) can be uniquely extended to polynomial functions in \(x \in K\), we + may in general define \[ \theta_\lambda(r) = \sum_{i_1, \ldots, i_n \ge 0} @@ -707,7 +708,7 @@ \cdots - k_n \beta_n} = \theta_{k_1 \beta_1 + \cdots + k_n \beta_n}^{-1}\). The uniqueness of the polynomial extensions then implies \(\theta_{- \lambda} = \theta_\lambda^{-1}\) in general: given \(r \in \Sigma^{-1} - \mathcal{U}(\mathfrak{g})\) the map + \mathcal{U}(\mathfrak{g})\), the map \begin{align*} \mathfrak{h}^* & \to \Sigma^{-1} \mathcal{U}(\mathfrak{g}) \\ \lambda & \mapsto \theta_\lambda(\theta_{-\lambda}(r)) - r @@ -717,7 +718,7 @@ identicaly zero. Finally, let \(M\) be a \(\Sigma^{-1} \mathcal{U}(\mathfrak{g})\)-module - whose restriction is weight module. If \(m \in M\) then + whose restriction is a weight module. If \(m \in M\) then \[ m \in (\theta_\lambda M)_{\mu + \lambda} \iff \theta_\lambda(H) m = (\mu + \lambda)(H) \cdot m