- Commit
- d4aff46c38d5b8e35d7753d241db15611a9e3d81
- Parent
- 4cc54e0bc8d0018b0446e2dccb22b9189aff113a
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Clarified some notation
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Clarified some notation
1 file changed, 6 insertions, 3 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/introduction.tex | 9 | 6 | 3 |
diff --git a/sections/introduction.tex b/sections/introduction.tex @@ -844,7 +844,9 @@ representations. \end{tikzcd} \end{center} commutes for all \(X \in \mathfrak{g}\). We denote the space of all - intertwiners \(V \to W\) by \(\operatorname{Hom}_{\mathfrak{g}}(V, W)\). + intertwiners \(V \to W\) by \(\operatorname{Hom}_{\mathfrak{g}}(V, W)\) -- as + opposed the the space \(\operatorname{Hom}(V, W)\) of all \(K\)-linear maps + \(V \to W\). \end{definition} The collection of representations of a fixed Lie algebra \(\mathfrak{g}\) thus @@ -923,8 +925,9 @@ define\dots \begin{example} Given a Lie algebra \(\mathfrak{g}\) and representations \(V\) and \(W\) of - \(\mathfrak{g}\), the spaces \(V \wedge W\) and \(V \odot W\) are both - representations of \(\mathfrak{g}\): they are quotients of \(V \otimes W\). + \(\mathfrak{g}\), the exterior and symmetric products \(V \wedge W\) and \(V + \odot W\) are both representations of \(\mathfrak{g}\): they are quotients of + \(V \otimes W\). \end{example} \begin{example}